Understanding the mechanisms that underlie opioid-induced analgesic tolerance and hyperalgesia is important for developing novel therapeutic strategies to achieve more effective pain management. The changes in dorsal horn neuronal plasticity that occur after chronic opioid exposure are believed to underlie the induction and maintenance of opioid-induced tolerance and hyperalgesia. Mammalian target of rapamycin (mTOR), a serine-threonine protein kinase, controls protein translation via phosphorylation of specific downstream effectors, such as 4E-BP1 and S6K1. Our preliminary work indicates that mu receptor/PI3K/Akt- mediated activation of dorsal horn mTOR participates in the formation of neuronal plasticity through mTOR- triggered initiation of protein translation during chronic morphine exposure. These novel discoveries suggest that dorsal horn mTOR activation is required for the development and maintenance of morphine-induced tolerance and hyperalgesia. This proposal will determine whether and how mTOR and its downstream effectors are activated in dorsal horn neurons under chronic morphine exposure and whether and how this activation contributes to the development and maintenance of morphine-induced analgesic tolerance and hyperalgesia.
In Specific Aim 1, we will examine (a) whether mTOR, S6K1, 4E-BP1, PI3K, and Akt are activated through mu receptor activation in dorsal horn following repeated morphine injections;(b) whether PI3K and Akt mediate mu receptor-triggered activation of mTOR, S6K1, and 4E-BP1 in dorsal horn neurons during chronic morphine exposure;and (c) whether the PI3K/Akt/mTOR pathway is activated in mu receptor-expressing and nociceptive dorsal horn neurons following repeated morphine injection.
In Specific Aim 2, we will define whether spinal mu receptor-dependent activation of the PI3K/Akt/mTOR pathway contributes to mechanism of morphine tolerance and hyperalgesia through mTOR-triggered dorsal horn protein synthesis. We will examine (a) time-dependent increases in translation initiation activity, nascent protein synthesis, and some known tolerance-associated key proteins in dorsal horn neurons following chronic morphine exposure and (b) whether these increases could be blocked by inhibition of spinal mu receptor-triggered activation of the PI3K/Akt/mTOR pathway.
In Specific Aim 3, we will determine whether spinal mTOR and the translation initiation that it triggers are required for the development and maintenance of morphine-induced tolerance and hyperalgesia. The effects of pharmacologic inhibition of spinal mTOR, genetic knockdown of spinal mTOR and S6K1, or over- expression of dorsal horn 4E-BP1 on the development and maintenance of morphine-induced tolerance and hyperalgesia will be examined. The proposed studies will provide major conceptual advances to our understanding of the molecular mechanism of morphine-induced analgesic tolerance and hyperalgesia. Because mTOR inhibitors are FDA-approved drugs, our studies may also have a strong potential clinical application in treating and/or preventing opioid-induced analgesic tolerance and hyperalgesia.

Public Health Relevance

Development of opioid-induced analgesic tolerance and hyperalgesia is a significant clinical challenge when patients are given prolonged or repeated opioid treatment for moderate to severe pain. Understanding molecular mechanisms that underlie opioid-induced analgesic tolerance and hyperalgesia is important to achieving more effective pain treatment. The proposed studies will test a novel hypothesis that mu receptor- mediated activation of the PI3K/Akt/mTOR pathway contributes to the development and maintenance of morphine-induced analgesic tolerance and hyperalgesia through mTOR-triggered initiation of protein translation in spinal dorsal horn.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Project (R01)
Project #
1R01DA033390-01A1
Application #
8439671
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Rapaka, Rao
Project Start
2013-02-15
Project End
2013-11-30
Budget Start
2013-02-15
Budget End
2013-11-30
Support Year
1
Fiscal Year
2013
Total Cost
$405,405
Indirect Cost
$155,155
Name
Johns Hopkins University
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Lutz, Brianna Marie; Bekker, Alex; Tao, Yuan-Xiang (2014) Noncoding RNAs: new players in chronic pain. Anesthesiology 121:409-17
Xu, Ji-Tian; Zhao, Jian-Yuan; Zhao, Xiuli et al. (2014) Opioid receptor-triggered spinal mTORC1 activation contributes to morphine tolerance and hyperalgesia. J Clin Invest 124:592-603
Fan, Longchang; Guan, Xiaowei; Wang, Wei et al. (2014) Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1.2 in primary afferent neurons. Mol Pain 10:8
Liang, Lingli; Fan, Longchang; Tao, Bo et al. (2013) Protein kinase B/Akt is required for complete Freund's adjuvant-induced upregulation of Nav1.7 and Nav1.8 in primary sensory neurons. J Pain 14:638-47
Zhao, Xiuli; Tang, Zongxiang; Zhang, Hongkang et al. (2013) A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat Neurosci 16:1024-31
Liang, Lingli; Tao, Bo; Fan, Longchang et al. (2013) mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res 1513:17-25