The overall goal of this proposal is to determine the importance of adult hippocampal neurogenesis to the recovery process following extended access methamphetamine intake. Research into understanding the neurobiological basis of addiction and relapse has significantly progressed, but to date few treatments are known to reverse the drug-induced neuroplasticity changes that convey vulnerability to relapse. Understanding the neuroplastic changes that underlie the relapse stage of addiction can help generate better treatment options for addiction. One potential mechanism to accelerate brain repair during withdrawal is stimulating the generation of neurons from adult neural stem cells - a process known as adult hippocampal neurogenesis. Neural stem cells persist in the adult hippocampal subgranular zone (SGZ). Adult hippocampal neurogenesis is involved in some aspects of methamphetamine addiction, as reinforcing doses of methamphetamine reduce proliferation, differentiation and neurogenesis of neural stem cells in the SGZ. However, the effects of withdrawal from methamphetamine on these stages of hippocampal neurogenesis are unknown. Furthermore, it is unclear if the process of adult neurogenesis can be stimulated during withdrawal;the types of neurons that can be replaced during withdrawal and their ability to integrate into preexisting circuitry. In the proposed studies, innovative genetic, electrophysiological and immunohistochemical techniques and behavioral models will be used to specifically label, stimulate or inhibit adult-generated neurons in the setting of extended access methamphetamine intake. Using these approaches, we will test our central hypothesis that hippocampal neurogenesis contributes to repair after withdrawal from extended access methamphetamine via neuronal replacement;thus, inhibiting this process will impair recovery and stimulating this process will augment recovery and reduce or prevent relapse. Studies in Aim 1 will characterize the long-term survival and integration of adult-generated neurons after methamphetamine self-administration. Experiments in Aim 2 will determine if adult neurogenesis is critical to the prevention of relapse.
In Aim 3, we will determine whether adult neurogenesis during withdrawal contributes to functional recovery and prevents relapse.

Public Health Relevance

Neural stem cells persist in the hippocampus in the adult mammalian brain. The proposed studies seek to determine whether hippocampal neural stem cells play a role in reducing relapse, assist with repair by replacing cells damaged by brain disorders and promote recovery.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Pilotte, Nancy S
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Staples, Miranda C; Fannon, McKenzie J; Mysore, Karthik K et al. (2017) Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers. Brain Res 1663:59-65
Somkuwar, Sucharita S; Vendruscolo, Leandro F; Fannon, McKenzie J et al. (2017) Abstinence from prolonged ethanol exposure affects plasma corticosterone, glucocorticoid receptor signaling and stress-related behaviors. Psychoneuroendocrinology 84:17-31
Mandyam, Chitra D; Schilling, Jan M; Cui, Weihua et al. (2017) Neuron-Targeted Caveolin-1 Improves Molecular Signaling, Plasticity, and Behavior Dependent on the Hippocampus in Adult and Aged Mice. Biol Psychiatry 81:101-110
Galinato, M H; Lockner, J W; Fannon-Pavlich, M J et al. (2017) A synthetic small-molecule Isoxazole-9 protects against methamphetamine relapse. Mol Psychiatry :
Egawa, Junji; Schilling, Jan M; Cui, Weihua et al. (2017) Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J 31:3403-3411
Somkuwar, Sucharita S; Fannon, McKenzie J; Bao Nguyen, Tran et al. (2017) Hyper-oligodendrogenesis at the vascular niche and reduced blood-brain barrier integrity in the prefrontal cortex during protracted abstinence. Neuroscience 362:265-271
Mandyam, Chitra D; Villalpando, Emmanuel G; Steiner, Noah L et al. (2017) Platelet Endothelial Cell Adhesion Molecule-1 and Oligodendrogenesis: Significance in Alcohol Use Disorders. Brain Sci 7:
Somkuwar, Sucharita S; Fannon-Pavlich, McKenzie J; Ghofranian, Atoosa et al. (2016) Wheel running reduces ethanol seeking by increasing neuronal activation and reducing oligodendroglial/neuroinflammatory factors in the medial prefrontal cortex. Brain Behav Immun 58:357-368
Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J et al. (2016) Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct 221:261-76
Somkuwar, Sucharita S; Fannon, McKenzie J; Head, Brian P et al. (2016) Methamphetamine reduces expression of caveolin-1 in the dorsal striatum: Implication for dysregulation of neuronal function. Neuroscience 328:147-56

Showing the most recent 10 out of 15 publications