Current non-invasive (or minimally invasive) methods to assist outpatient clinical trials of therapeutics for Substance Use Disorders (SUD) are usually limited by issues such as 1) the inability to accurately and quantitatively monitor the frequency and level of a subject's illicit drug exposure and 2) uncertainty in assessing the level of a subject's adherence to the trial medication regiment. These limitations are mainly due to the technological challenges of (1) non-quantitative measurements, (2) inaccuracy, (3) requirement for frequent clinical visits, and (4) requirement for instrument and/or expertise for readout. Several available Point-of-Care (POC) ELISA platforms are able to screen drug usage qualitatively. However, the POC quantitative measurement remains an unmet, yet critical need in the assessment of drug abuse. Microfluidics has emerged as a potential approach for POC drug tests and personalized diagnostics, because of its potential capabilities for multiplexed and quantitative measurements, portability, low cost, high throughput, and other advantages. However, the full development of a platform that overcomes all the listed challenges has not yet been realized. Here, we propose a Multiplexed Volumetric Bar-Chart Chip (V-Chip) to assay for drug targets in diverse clinical samples, which integrates functions including quantitation, instrument free readout, portability, and affordability. Volumetric readouts, based on measurements of oxygen generated by a reaction between catalase and hydrogen peroxide, allow instant and visual quantitation of target drugs and biomarkers and generate visual bar charts without the need for external instruments, data processing, or graphic plotting. The development of the V-Chip thus marks a POC milestone and opens up the possibility of instrument-free personalized diagnosis and SUD management.

Public Health Relevance

Major technological challenges remain in the development of assays for the personalized diagnosis and self-assessment of drug abuse, including improvements in assay throughput, quantitation, and turn-around time, and reduction in measurement cost and operational training, and optimization of equipment portability and accessibility. Over the last decade, microfluidics-based point-of-care (POC) diagnostics have been developed to meet such challenges. We propose a multiplexed Volumetric Bar-Chart Chip (V-Chip) to assay drug targets in diverse clinical samples, which addresses all of the listed needs. Volumetric readouts, based on measurements of oxygen generated by a reaction between catalase and hydrogen peroxide, allow the rapid and visual quantitation of target biomarkers and provide visualized bar charts without any assistance from instruments, data processing, or graphic plotting. The development of the V-Chip holds the potential to meet the technological challenges listed in the PAR-12-239 grant mechanism.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Research Project (R01)
Project #
Application #
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Kline, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Methodist Hospital Research Institute
United States
Zip Code
Liu, Zongbin; Han, Xin; Zhou, Qing et al. (2017) Integrated Microfluidic System for Gene Silencing and Cell Migration. Adv Biosyst 1:
Vu, Timothy Quang; de Castro, Ricardo Miguel Bessa; Qin, Lidong (2017) Bridging the gap: microfluidic devices for short and long distance cell-cell communication. Lab Chip 17:1009-1023
Zhang, Kai; Gao, Min; Chong, Zechen et al. (2016) Single-cell isolation by a modular single-cell pipette for RNA-sequencing. Lab Chip 16:4742-4748
Han, Xin; Liu, Zongbin; Zhao, Li et al. (2016) Microfluidic Cell Deformability Assay for Rapid and Efficient Kinase Screening with the CRISPR-Cas9 System. Angew Chem Int Ed Engl 55:8561-5
Li, Ying; Xuan, Jie; Song, Yujun et al. (2016) Nanoporous Glass Integrated in Volumetric Bar-Chart Chip for Point-of-Care Diagnostics of Non-Small Cell Lung Cancer. ACS Nano 10:1640-7
Liu, Zongbin; Han, Xin; Qin, Lidong (2016) Recent Progress of Microfluidics in Translational Applications. Adv Healthc Mater 5:871-88
Jo, Myeong Chan; Qin, Lidong (2016) Microfluidic Platforms for Yeast-Based Aging Studies. Small :
He, Bin; Li, Wen-Cui; Yang, Chao et al. (2016) Incorporating Sulfur Inside the Pores of Carbons for Advanced Lithium-Sulfur Batteries: An Electrolysis Approach. ACS Nano 10:1633-9
Li, Ying; Xuan, Jie; Xia, Tom et al. (2015) Competitive volumetric bar-chart chip with real-time internal control for point-of-care diagnostics. Anal Chem 87:3771-7
Jang, Joon Hee; Huang, Yu; Zheng, Peilin et al. (2015) Imaging of Cell-Cell Communication in a Vertical Orientation Reveals High-Resolution Structure of Immunological Synapse and Novel PD-1 Dynamics. J Immunol 195:1320-30

Showing the most recent 10 out of 19 publications