While seeking out and consuming caloric substances is essential for survival, specific brain circuits that control adaptive food seeking as well as consumption, likely become dysregulated to promote a variety of maladaptive behaviors such as addiction and binge eating. Thus, experiments designed to further understand the specific neural circuit components that control food consumption and reinforcement are of critical importance for identifying important novel targets for the development of future treatments for eating disorders. Here we propose to study the precise neural circuits of the lateral hypothalamus that regulate natural reward seeking and consumption. We plan to map the precise circuit connectivity and function between genetically defined neuronal populations of the lateral hypothalamus and afferent and efferent structures, as well to characterize the neuronal activity patterns within these circuits during reward seeking and consumption behaviors. We will also test of the necessity and sufficiency of precise circuit elements to these processes. Collectively, these experiments will elucidate the precise neural circuits that interface the laterl hypothalamus with other brain structure to orchestrate reward processing. These experiments will likely uncover many novel circuits critical for reward seeking and consumption to target for future therapeutic interventions for neuropsychiatric disorders such as addiction and depression, as well eating disorders and obesity.

Public Health Relevance

Psychiatric and neurological diseases and disorders have a tremendous impact on society. Despite improved diagnosis and treatment, further advancement is significantly hindered by a lack of understanding how alterations in neural circuit function leads to the development and expression of disease states. The research directions outlined in this proposal will characterize the function of key neural circuits that are involved in psychiatri disease such as substance abuse disorders and eating disorders. We aim to study these neural circuit elements in order to identify potentially novel therapeutic targets for the treatment neuropsychiatric disorders.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
1R01DA038168-01
Application #
8767369
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Pilotte, Nancy S
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Psychiatry
Type
Schools of Medicine
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Stuber, Garret D; Wise, Roy A (2016) Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 19:198-205
Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie et al. (2016) Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens. Sci Rep 6:31613
Cone, Jackson J; Fortin, Samantha M; McHenry, Jenna A et al. (2016) Physiological state gates acquisition and expression of mesolimbic reward prediction signals. Proc Natl Acad Sci U S A 113:1943-8
Stamatakis, Alice M; Van Swieten, Maaike; Basiri, Marcus L et al. (2016) Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward. J Neurosci 36:302-11
Resendez, Shanna L; Jennings, Josh H; Ung, Randall L et al. (2016) Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc 11:566-97
Stuber, Garret D; Stamatakis, Alice M; Kantak, Pranish A (2015) Considerations when using cre-driver rodent lines for studying ventral tegmental area circuitry. Neuron 85:439-45
Jennings, Joshua H; Ung, Randall L; Resendez, Shanna L et al. (2015) Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160:516-27
McHenry, Jenna A; Rubinow, David R; Stuber, Garret D (2015) Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 38:65-72
Resendez, Shanna L; Stuber, Garret D (2015) In vivo calcium imaging to illuminate neurocircuit activity dynamics underlying naturalistic behavior. Neuropsychopharmacology 40:238-9
Sparta, Dennis R; Stuber, Garret D (2014) Cartography of serotonergic circuits. Neuron 83:513-5