This work is designed to understand how hair cells, the sensory cells of the inner ear, use their mechanically- sensitive hair bundle to convert sound to electrical signals. Among other approaches, we identify and quantify proteins in purified bundles using mass spectrometry. Focusing on molecular complexes that contribute to bundle function, our experiments address two fundamental questions: First, how is the hair bundle formed? Second, how does the mechanotransduction complex work at a molecular level? In Aim 1, we will identify protein complexes including radixin, an action-to-membrane crosslinker that is essential for hair-bundle cytoskeleton structure, and SLC9A3R2, a PDZ-domain adaptor protein that binds to radixin. We will also express dominant-negative radixin and SLC9A3R2 constructs to determine how complexes with these proteins control bundle structure.
In Aims 2 and 3, we will continue our efforts to identify and characterize the transduction channel itself. We have a pair of strong candidates for the channel, members of the transient receptor potential (TRP) channel family. We propose to locate the channels within stereocilia, determine their interactions with other known members of the transduction complex, and examine mechanotransduction in mice missing one or both of the channels. Ongoing experiments could prove that these TRP channels are not the transduction channel, however, so Aim 3 proposes to improve our ongoing biochemical preparation of the transduction complex, as well as to identify transmembrane proteins in purified stereocilia membranes. Research proposed here will show how mechanotransduction operates in the normal inner ear. As stated in the most recent strategic plan, one of the major goals of the NIDCD is to use genomic, proteomic, informatic, bioinformatic, and expression...approaches...to understand the molecular bases of normal and disordered [hearing and balance]. Understanding how the bundle is assembled and how its transduction machinery normally operates, the focus of the proposed research, is essential for rational design of therapies for hearing loss and balance disorders.

Public Health Relevance

These experiments will allow us to understand how the hair bundle, the component of the inner ear that converts sound to neural signals, operates. Our study will reveal how several molecules of known importance to the hair bundle, which mediate its assembly and mechanical-to-electrical conversion activity, carry out their roles. More significantly, these experiments will allow us to design rational approaches to detecting and ameliorating hearing loss and disrupted balance.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
4R01DC002368-22
Application #
9088441
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Freeman, Nancy
Project Start
1994-07-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
22
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Vranka, Janice A; Staverosky, Julia A; Reddy, Ashok P et al. (2018) Biomechanical Rigidity and Quantitative Proteomics Analysis of Segmental Regions of the Trabecular Meshwork at Physiologic and Elevated Pressures. Invest Ophthalmol Vis Sci 59:246-259
Krey, Jocelyn F; Dumont, Rachel A; Wilmarth, Philip A et al. (2018) ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci 38:843-857
Rozanov, Dmitri V; Rozanov, Nikita D; Chiotti, Kami E et al. (2018) MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection. J Proteomics 176:13-23
Erickson, Timothy; Morgan, Clive P; Olt, Jennifer et al. (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). Elife 6:
Krey, J F; Wilmarth, P A; David, L L et al. (2017) Analysis of the Proteome of Hair-Cell Stereocilia by Mass Spectrometry. Methods Enzymol 585:329-354
Kala, Smriti; Mehta, Vaibhav; Yip, Chun Wai et al. (2017) The interaction of a Trypanosoma brucei KH-domain protein with a ribonuclease is implicated in ribosome processing. Mol Biochem Parasitol 211:94-103
Tompkins, Nathan; Spinelli, Kateri J; Choi, Dongseok et al. (2017) A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 113:1868-1881
Krey, Jocelyn F; Krystofiak, Evan S; Dumont, Rachel A et al. (2016) Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol 215:467-482
Krey, Jocelyn F; Drummond, Meghan; Foster, Sarah et al. (2016) Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 6:27221
Geszvain, Kati; Smesrud, Logan; Tebo, Bradley M (2016) Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1. Appl Environ Microbiol 82:3774-3782

Showing the most recent 10 out of 62 publications