The long-term objective of the proposed research is to study the role and properties of electrical synaptic transmission via gap junctions in the CNS, in particular in the auditory system. The experimental model involves identified mixed electrical and chemical, (glutamatergic) synapses between eighth nerve auditory primary afferents and the goldfish Mauthner (M-) cell. While most studies of gap junction function utilize exogenous expression systems, this preparation uniquely allows continuous monitoring and quantification of changes in junctional conductance in vivo. Both components of the synaptic response exhibit activity-dependent modifications on their strength that is mediated via activation of NMDA receptors. Paired intradendritic and single afferent recordings, molecular biology techniques, and immunocytochemistry, will be used to test specific hypotheses and mechanisms underlying modifications of electrical transmission induced by eighth nerve tetani, determinants of bi-directional communication and the identity of specific gap junction proteins.
Aim 1 explores the cellular and molecular mechanisms underlying activity-dependent modification (potentiation and depression) of gap junctional conductance. It is based on data suggesting that changes in electrical coupling at single terminals following brief tetani can be in the form of both depressions and potentiations. I will explore the roles of elevated levels of postsynaptic calcium/calmodulin-dependent kinase II (CamKIl), protein phosphatases and agents interfering with postsynaptic exofendocytosis on unitary and population synaptic responses.
Aim 2 is to investigate the possibIe role of somatostatin in activity-dependent plasticity of these junctions. This peptide is co-localized with glutamate at presynaptic terminals and preliminary data shows that its application enhances both components of the synaptic response. Since both somatostatin and glutamate are likely to be co-released during tetani, I propose to explore their possible functional interactions and underlying intracellular mechanisms.
Aim 3 concerns identification of the neuron-specific gap junction proteins at these connections. Sub-cellular distributions of antibodies specific to various connexins will be analyzed with immunocytochemistry, using confocal and freeze-fracture electron microscopy, and single cell RT-PCR of the coupled cells. The proposed research addresses the concept that intercellular coupling through gap junction channels is dynamic, based on its functional interaction with neighboring glutamatergic synapses and peptidergic transmission. These modulatory phenomena could constitute a widespread property of electrical synapses in general, relevant not only to normal brain function in structures such as the retina, inferior olive, and neocortex where both forms of transmission co-exist, but also to numerous health-related issues such as epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC003186-10
Application #
6839457
Study Section
Special Emphasis Panel (ZRG1-IFCN-6 (01))
Program Officer
Freeman, Nancy
Project Start
1997-01-01
Project End
2007-01-31
Budget Start
2005-02-01
Budget End
2006-01-31
Support Year
10
Fiscal Year
2005
Total Cost
$340,103
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Neurosciences
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Faber, Donald S; Pereda, Alberto E (2018) Two Forms of Electrical Transmission Between Neurons. Front Mol Neurosci 11:427
Nagy, James I; Pereda, Alberto E; Rash, John E (2018) Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochim Biophys Acta Biomembr 1860:102-123
Miller, Adam C; Pereda, Alberto E (2017) The electrical synapse: Molecular complexities at the gap and beyond. Dev Neurobiol 77:562-574
Pereda, Alberto E; Macagno, Eduardo (2017) Electrical transmission: Two structures, same functions? Dev Neurobiol 77:517-521
Nagy, James I; Pereda, Alberto E; Rash, John E (2017) On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett :
Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E (2016) Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain. BMC Cell Biol 17 Suppl 1:14
Cachope, Roger; Pereda, Alberto E (2015) Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell. J Neurophysiol 114:689-97
Yao, Cong; Vanderpool, Kimberly G; Delfiner, Matthew et al. (2014) Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 112:2102-13
Pereda, Alberto E (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15:250-63
Pereda, Alberto E; Schweizer, Felix E; Zottoli, Steven J (2013) On the training of future neuroscientists: insights from the Grass laboratory. Neuron 79:12-5

Showing the most recent 10 out of 20 publications