Myosin-X is an unconventional myosin of the MyTH-FERM super class that is broadly expressed in vertebrate tissues. Although little is known about the functions of the MyTH-FERM myosins, mutations in one member of this group are the leading cause of hereditary deaf-blindness in children. We recently discovered that myosin-X undergoes a novel form of motility within filopodia, and we hypothesize that myosin-X is a component of a widespread but previously uncharacterized system for intracellular transport on actin-rich structures such as filopodia. Myosin-X also exhibits a remarkable localization to the tips of filopodia and overexpressing it leads to increased number and length of filopodia, suggesting that myosin-X functions in the largely unknown pathways regulating filopodial dynamics. Myosin-X also binds to integrins and one of its light chains is known to be dramatically down regulated in many tumors. Together these data strongly suggest that myosin-X and the novel form of motility associated with it play fundamental but largely unexplored roles in the basic cell biology underlying human health and disease. We propose to: I. Determine the fundamental properties, mechanisms, and regulation of this novel form of motility. II. Identify the structures and molecular cargo(s) transported by intrafilopodial motility. III. Use myosin-X as a marker to identify the components of a putative filopodial tip complex and determine if myosin-X is a component of signaling pathways that regulate filopodial dynamics. IV. Determine the functions of myosin-X in key cell biological processes such as phagocytosis, filopodial dynamics, and cell crawling. This research will determine the fundamental properties of a novel and previously uncharacterized form of motility that has critical implications for a host of important cell biological processes including integrin function, cell adhesion, filopodial dynamics, macrophage function, and nerve regrowth. The proposed research will thus answer critical questions about the basic cell biology underlying many human diseases including cancer, hereditary deafness, retinitis pigmentosa, and nerve injury.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC003299-10
Application #
7067142
Study Section
Special Emphasis Panel (ZRG1-CDF-4 (02))
Program Officer
Freeman, Nancy
Project Start
1997-06-01
Project End
2007-06-30
Budget Start
2006-06-01
Budget End
2007-06-30
Support Year
10
Fiscal Year
2006
Total Cost
$257,556
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Physiology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Purcell, Erin B; McKee, Robert W; Courson, David S et al. (2017) A Nutrient-Regulated Cyclic Diguanylate Phosphodiesterase Controls Clostridium difficile Biofilm and Toxin Production during Stationary Phase. Infect Immun 85:
Courson, David S; Cheney, Richard E (2015) Myosin-X and disease. Exp Cell Res 334:10-5
Bultema, Jarred J; Boyle, Judith A; Malenke, Parker B et al. (2014) Myosin vc interacts with Rab32 and Rab38 proteins and works in the biogenesis and secretion of melanosomes. J Biol Chem 289:33513-28
Lin, Lin; Sun, Wei; Throesch, Ben et al. (2013) DPP6 regulation of dendritic morphogenesis impacts hippocampal synaptic development. Nat Commun 4:2270
Lin, Wan-Hsin; Hurley, Joshua T; Raines, Alexander N et al. (2013) Myosin X and its motorless isoform differentially modulate dendritic spine development by regulating trafficking and retention of vasodilator-stimulated phosphoprotein. J Cell Sci 126:4756-68
Bishai, Ellen A; Sidhu, Gurjit S; Li, Wei et al. (2013) Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread. Cell Microbiol 15:353-367
Raines, Alexander N; Nagdas, Sarbajeet; Kerber, Michael L et al. (2012) Headless Myo10 is a negative regulator of full-length Myo10 and inhibits axon outgrowth in cortical neurons. J Biol Chem 287:24873-83
Liu, Katy C; Jacobs, Damon T; Dunn, Brian D et al. (2012) Myosin-X functions in polarized epithelial cells. Mol Biol Cell 23:1675-87
Kerber, Michael L; Cheney, Richard E (2011) Myosin-X: a MyTH-FERM myosin at the tips of filopodia. J Cell Sci 124:3733-41
McMichael, Brooke K; Cheney, Richard E; Lee, Beth S (2010) Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules. J Biol Chem 285:9506-15

Showing the most recent 10 out of 17 publications