Ion channels are a component of multiprotein scaffolds regulated by molecular protein-protein interactions to control electrical excitability of neurons and provide proper subcellular adjacencies to downstream cell signaling machinery. The work in this proposal will focus upon non-traditional roles of a voltage-gated ion channel (Kv1.3) predominantly expressed in mitral cell neurons of the olfactory bulb to understand the contribution of voltage-gated activity to olfactory coding. The recently uncovered, multifarious role for K channels - including energy homeostasis, axon targeting, and development of neuronal cytoarchitecture - is poorly understood. A multidisciplinary approach using transgenic mouse models (odorant receptor-tagged mice, Kv1.3-null mice, YFP mitral cell mice, and MC4R-null mice) to study Kv1.3 activity is proposed incorporating the METHODS of olfactory bulb electrophysiology, protein biochemistry, intranasal hormone/drug delivery, olfactory discrimination (behavior), systems physiology, and anatomical analysis of olfactory circuitry as a means for determining the mechanistic details and global physiological effects of neuromodulation of voltage-gated activity in the olfactory bulb.
The SPECIFIC AIMS of this proposal are based on three HYPOTHESES: 1. Interactions with signaling proteins in the insulin receptor kinase/phosphatase cascade regulate Kv1.3 ion channel activity. 2. Voltage-gated activity from Kv1.3 ion channels modulates olfactory bulb mitral cell activity and olfactory acuity. 3. Gene-targeted deletions of Kv1.3 channel protein and the melanocortin 4 receptor will provide mechanistic details of how this potassium channel regulates energy homeostasis that modulates olfactory sensory ability via glucose utilization. The broad, long-term OBJECTIVE of this research is to elucidate how neuromodulation of voltage-gated ion channel activity can give rise to diverse functions in the olfactory system such as long-term plastic changes in synaptic efficacy, links to energy metabolism, or to fine tune the expression of odorant receptors and their central targets. Understanding the general principles of how ion channels are regulated by well defined molecules enriched in the olfactory system and involved in metabolic disorders (diabetes) and neurodegenerative diseases (Alzheimer's) and why gene-targeted deletion of Kv1.3 increases olfactory ability and induces resistance to weight gain, holds great translational promise as a target for increasing odor discrimination or lessening imbalance in energy homeostasis (obesity).

Public Health Relevance

Sixty-five percent of Americans are overweight;unwanted weight gain induces an increased workload on the heart and circulation, increases insulin resistance, and precipitates type II Diabetes. This proposal is designed to elucidate the basic cellular mechanisms of how ion channels expressed in the olfactory bulb are involved in body weight and energy metabolism;is there a link between olfactory ability and obesity?

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC003387-16
Application #
8463843
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
1998-01-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
16
Fiscal Year
2013
Total Cost
$249,168
Indirect Cost
$77,844
Name
Florida State University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
790877419
City
Tallahassee
State
FL
Country
United States
Zip Code
32306
VĂ©lez, Patricio; Schwartz, Austin B; Iyer, Subashini R et al. (2016) Ubiquitin ligase Nedd4-2 modulates Kv1.3 current amplitude and ion channel protein targeting. J Neurophysiol 116:671-85
Kovach, Christopher P; Al Koborssy, Dolly; Huang, Zhenbo et al. (2016) Mitochondrial Ultrastructure and Glucose Signaling Pathways Attributed to the Kv1.3 Ion Channel. Front Physiol 7:178
Spear, John M; Koborssy, Dolly Al; Schwartz, Austin B et al. (2015) Kv1.3 contains an alternative C-terminal ER exit motif and is recruited into COPII vesicles by Sec24a. BMC Biochem 16:16
Thiebaud, Nicolas; Johnson, Melissa C; Butler, Jessica L et al. (2014) Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci 34:6970-84
Tucker, Kristal; Cho, Sukhee; Thiebaud, Nicolas et al. (2013) Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel. J Physiol 591:2541-61
Johnson, Melissa Cavallin; Biju, K C; Hoffman, Joshua et al. (2013) Odor enrichment sculpts the abundance of olfactory bulb mitral cells. Neurosci Lett 541:173-8
Mast, Thomas Gerald; Fadool, Debra Ann (2012) Mature and precursor brain-derived neurotrophic factor have individual roles in the mouse olfactory bulb. PLoS One 7:e31978
Palouzier-Paulignan, Brigitte; Lacroix, Marie-Christine; Aime, Pascaline et al. (2012) Olfaction under metabolic influences. Chem Senses 37:769-97
Corthell, J T; Fadool, D A; Trombley, P Q (2012) Connexin and AMPA receptor expression changes over time in the rat olfactory bulb. Neuroscience 222:38-48
Tucker, Kristal R; Godbey, Steven J; Thiebaud, Nicolas et al. (2012) Olfactory ability and object memory in three mouse models of varying body weight, metabolic hormones, and adiposity. Physiol Behav 107:424-32

Showing the most recent 10 out of 24 publications