The long-term goals of this project are to investigate changes in peripheral auditory function during maturation and aging and to investigate the relationship between these changes and concomitant changes in auditory perception. Specifically, we will: (1) define the time course for maturation and aging of distortion product otoacoustic emission (DPOAE) fine structure and the individual components comprising the distortion product, (2) define the time course for maturation and aging of the medial olivocochlear (MOC) reflex and (3) relate the observed changes in peripheral auditory physiology to changes in speech perception throughout the human lifespan. Past work has established that peripheral immaturities in the auditory system exist postnatally but the time course for maturation has not been defined, nor have the sources of this immaturity been fully specified. Experiments in this project will allow us to complete the maturational time line, examine the sources of immaturity by studying auditory function at multiple levels of the system, and consider how these changes in peripheral function impact communicative ability. The objectives will be achieved by implementing a novel approach that considers change in peripheral auditory function throughout the human lifespan as a continuum, including both maturational and aging processes.
The first aim will be addressed by measuring DPOAE fine structure to parse out the relative contribution from two basilar membrane sources: the DPOAE generator region and the DP characteristic frequency (CF) region. State-of-the-art swept-tone methodology will be used in eight age groups ranging from premature infants to elderly adults. There are currently no published studies of DPOAE fine structure in infants although this issue may be highly relevant to questions of cochlear maturation.
The second aim will be accomplished by implementing a DPOAE contralateral noise technique to measure MOC reflexes in the same eight age groups at three frequencies. This paradigm will take into account each subject's individual DPOAE fine structure pattern and record the MOC reflex at response peaks (maxima) only, to control for the relationship between DPOAE components during maturation and aging.
The third aim will be accomplished by measuring speech perception in noise along with the two previously described metrics of peripheral auditory function, in adolescent through elderly subjects. This experiment will examine the relationship between changes in the periphery and communicative ability and define the extent to which changes in auditory peripheral physiology throughout life can account for changes in perception. This work is relevant to hearing health and clinical practice because it will provide a normative framework for changes in auditory peripheral function from birth through old age. Furthermore, defining DPOAE fine structure in the pediatric population will help specify which cochlear regions are evaluated during routine DPOAE hearing tests and, thus, have the potential to increase accuracy of hearing diagnoses in children. Finally, this project will lead to a clearer understanding of how natural changes in auditory peripheral function contribute to diminishing speech perception in latter years and will help parse out peripheral versus central contributions to this decline. This work will provide a normative framework for natural changes in auditory peripheral function during maturation and aging and will help specify which cochlear regions (and frequencies) are actually assessed during a routine pediatric hearing evaluation using otoacoustic emissions. This information has the potential to increase the sophistication and accuracy of hearing evaluations and thus, of subsequent intervention. This work will also lead to an understanding of how natural, lifetime changes in auditory peripheral function contribute to diminishing speech perception during the latter decades of life and help parse out peripheral versus central contributions to this decline.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
7R01DC003552-14
Application #
8764772
Study Section
Auditory System Study Section (AUD)
Program Officer
Donahue, Amy
Project Start
1998-08-01
Project End
2014-06-30
Budget Start
2013-10-01
Budget End
2014-06-30
Support Year
14
Fiscal Year
2013
Total Cost
$348,248
Indirect Cost
$135,901
Name
University of Southern California
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Ortmann, Amanda J; Abdala, Carolina (2016) Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions. Ear Hear 37:603-14
Kalluri, Radha; Abdala, Carolina (2015) Stimulus-frequency otoacoustic emissions in human newborns. J Acoust Soc Am 137:EL78-84
Mishra, Srikanta K; Abdala, Carolina (2015) Stability of the medial olivocochlear reflex as measured by distortion product otoacoustic emissions. J Speech Lang Hear Res 58:122-34
Abdala, Carolina; Kalluri, Radha (2015) Exploiting Dual Otoacoustic Emission Sources. AIP Conf Proc 1703:
Abdala, Carolina; Luo, Ping; Shera, Christopher A (2015) Optimizing swept-tone protocols for recording distortion-product otoacoustic emissions in adults and newborns. J Acoust Soc Am 138:3785-99
Abdala, Carolina; Guérit, François; Luo, Ping et al. (2014) Distortion-product otoacoustic emission reflection-component delays and cochlear tuning: estimates from across the human lifespan. J Acoust Soc Am 135:1950-8
Abdala, Carolina; Dhar, Sumitrajit; Ahmadi, Mahnaz et al. (2014) Aging of the medial olivocochlear reflex and associations with speech perception. J Acoust Soc Am 135:754-65
Abdala, Carolina; Mishra, Srikanta; Garinis, Angela (2013) Maturation of the human medial efferent reflex revisited. J Acoust Soc Am 133:938-50
Abdala, Carolina; Dhar, Sumitrajit (2012) Maturation and aging of the human cochlea: a view through the DPOAE looking glass. J Assoc Res Otolaryngol 13:403-21
Dhar, Sumitrajit; Rogers, Abigail; Abdala, Carolina (2011) Breaking away: violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115-22

Showing the most recent 10 out of 24 publications