A variety of experimental approaches have established that the vestibular system contributes to making adjustments in the activity of thoracic and abdominal respiratory pump muscles as well as muscles that regulate the resistance of the upper airway during movement and changes in posture. However, these effects are complex, such that the physiological role of the vestibular system in regulating the movement of air in and out of the lungs is not yet clear.
Specific Aim 1 of the current proposal will determine this role by examining the consequences of a bilateral labyrinthectomy on the pressure, volume, and flow rate of air exchanged during inspiration and expiration as body orientation with respect to gravity is altered. Prior experiments have also shown that some of the neurons that relay vestibular signals to respiratory motoneurons are located in the medial medullary reticular formation, but that these cells are insufficient to produce vestibulo-respiratory responses. Our anatomical studies and physiological studies by others have revealed that additional premotor respiratory neurons are located in the spinal cord.
Specific Aim 2 will test the hypothesis that spinal interneurons are elements in the neuronal circuit that mediates vestibular system influences on the movement of air in and out of the lungs. Patterned contractions of respiratory muscles are additionally responsible for producing vomiting; vestibular signals trigger this motor activity during emesis associated with motion sickness. However, the neural circuit that elicits vomiting has not yet been established, although recent evidence suggests that cells in the medial medullary reticular formation are important components in this pathway.
Specific Aim 3 will test the hypothesis that medial medullary reticular formation neurons coordinate the patterned discharges of respiratory muscles that underlie vomiting, including emesis associated with motion sickness. Together, these experiments should establish the particular role that labyrinthine signals serve in adjusting the activity of respiratory muscles to compensate for the effects of gravity on these muscles, the airways, and the lungs. In addition, the location and physiological characteristics of premotor neurons that mediate labyrinthine influences on respiratory motoneuron firing, both during postural alterations and emesis, will be ascertained.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC003732-10
Application #
7317349
Study Section
Special Emphasis Panel (ZRG1-IFCN-F (05))
Program Officer
Platt, Christopher
Project Start
1998-05-01
Project End
2009-11-30
Budget Start
2007-12-01
Budget End
2008-11-30
Support Year
10
Fiscal Year
2008
Total Cost
$268,921
Indirect Cost
Name
University of Pittsburgh
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Balaban, Carey D; Yates, Bill J (2017) What is nausea? A historical analysis of changing views. Auton Neurosci 202:5-17
McCall, Andrew A; Miller, Daniel J; Catanzaro, Michael F et al. (2015) Hindlimb movement modulates the activity of rostral fastigial nucleus neurons that process vestibular input. Exp Brain Res 233:2411-9
Catanzaro, Michael F; Miller, Daniel J; Cotter, Lucy A et al. (2014) Integration of vestibular and gastrointestinal inputs by cerebellar fastigial nucleus neurons: multisensory influences on motion sickness. Exp Brain Res 232:2581-9
Horn, Charles C; Meyers, Kelly; Lim, Audrey et al. (2014) Delineation of vagal emetic pathways: intragastric copper sulfate-induced emesis and viral tract tracing in musk shrews. Am J Physiol Regul Integr Comp Physiol 306:R341-51
Yates, Bill J; Catanzaro, Michael F; Miller, Daniel J et al. (2014) Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness. Exp Brain Res 232:2455-69
Yates, Bill J; Bolton, Philip S; Macefield, Vaughan G (2014) Vestibulo-sympathetic responses. Compr Physiol 4:851-87
Balaban, Carey D; Ogburn, Sarah W; Warshafsky, Susan G et al. (2014) Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation. PLoS One 9:e86730
McCall, Andrew A; Moy, Jennifer D; Puterbaugh, Sonya R et al. (2013) Responses of vestibular nucleus neurons to inputs from the hindlimb are enhanced following a bilateral labyrinthectomy. J Appl Physiol (1985) 114:742-51
Arshian, Milad S; Puterbaugh, Sonya R; Miller, Daniel J et al. (2013) Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 228:353-63
McCall, Andrew A; Moy, Jennifer D; DeMayo, William M et al. (2013) Processing of vestibular inputs by the medullary lateral tegmental field of conscious cats: implications for generation of motion sickness. Exp Brain Res 225:349-59

Showing the most recent 10 out of 58 publications