The representation of speech and other complex auditory signals in the human brain constitutes a major interdisciplinary challenge for cognitive neuroscience. Understanding in a principled manner how acoustic signals are transformed and ultimately recognized as words in a speaker's mental dictionary requires the integration of knowledge across fields ranging from single-cell recording in auditory cortex to linguistic theory. The research program outlined here is focused on two subroutines in speech processing. In the context of the first specific aim, the hypothesis is investigated that speech is analyzed concurrently on two time scales in human auditory cortex, with one corresponding to analysis at the syllabic scale, another at the segmental (phonemic) scale. This multi-time resolution model, which provides an account of hemispheric asymmetry in audition, is tested in a series of behavioral and electrophysiological studies. The goal is to provide a theoretically motivated and neurobiologically sensible answer to how acoustic signals are fractionated in time and how they map to words stored in the brain.
The second aim encompasses both behavioral (often audio- visual) and electrophysiological studies that test how (specifically, how abstractly) speech and words are represented in the human brain. The goal is to test models of the cortical encoding of speech sounds and words. The principal method used in this research program is magnetoencephalography (MEG), typically with parallel behavioral studies performed. Other non-invasive recording modalities are also employed (EEG, fMRI) to validate and extend data from any single approach.

Public Health Relevance

Successfully perceiving speech and recognizing words are processes at the basis of human communication. A mechanistic characterization of the brain structures that mediate these skills is essential to understand the range of disorders associated with problems in speech processing. Health-related phenomena ranging from dyslexia and autism in childhood to aphasia and Alzheimer's disease in the aging population have been repeatedly linked to problems with the auditory analysis of complex signals and the ability to process words appropriately. The development of innovative diagnostic, interventional, and therapeutic approaches critically depends on our enriched knowledge of the brain basis of the processes underlying human speech.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC005660-09
Application #
8114016
Study Section
Language and Communication Study Section (LCOM)
Program Officer
Shekim, Lana O
Project Start
2002-08-01
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
9
Fiscal Year
2011
Total Cost
$491,533
Indirect Cost
Name
New York University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
041968306
City
New York
State
NY
Country
United States
Zip Code
10012
Tal, Idan; Large, Edward W; Rabinovitch, Eshed et al. (2017) Neural Entrainment to the Beat: The ""Missing-Pulse"" Phenomenon. J Neurosci 37:6331-6341
Ten Oever, Sanne; Schroeder, Charles E; Poeppel, David et al. (2017) Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli. J Neurosci 37:4903-4912
Teng, Xiangbin; Tian, Xing; Doelling, Keith et al. (2017) Theta band oscillations reflect more than entrainment: behavioral and neural evidence demonstrates an active chunking process. Eur J Neurosci :
Teng, Xiangbin; Tian, Xing; Poeppel, David (2016) Testing multi-scale processing in the auditory system. Sci Rep 6:34390
Steinberg Lowe, Mara; Lewis, Gwyneth A; Poeppel, David (2016) Effects of Part- and Whole-Object Primes on Early MEG Responses to Mooney Faces and Houses. Front Psychol 7:147
Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef et al. (2016) Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci 19:1374-80
Zhou, Hong; Melloni, Lucia; Poeppel, David et al. (2016) Interpretations of Frequency Domain Analyses of Neural Entrainment: Periodicity, Fundamental Frequency, and Harmonics. Front Hum Neurosci 10:274
Ding, Nai; Melloni, Lucia; Zhang, Hang et al. (2016) Cortical tracking of hierarchical linguistic structures in connected speech. Nat Neurosci 19:158-64
Scharinger, Mathias; Monahan, Philip J; Idsardi, William J (2016) Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations. Neuroimage 128:293-301
Almeida, Diogo; Poeppel, David; Corina, David (2016) The Processing of Biologically Plausible and Implausible forms in American Sign Language: Evidence for Perceptual Tuning. Lang Cogn Neurosci 31:361-374

Showing the most recent 10 out of 96 publications