The overall objective of the proposed research is to understand neural mechanisms underlying auditory-vocal interaction and auditory feedback processing during hearing in the primate brain. Such mechanisms are important for vocal control and learning as well as hearing but are poorly understood. Few studies have investigated these neural mechanisms in non-human primates because of technical difficulties in studying the activity of individual neurons during natural vocal behaviors. We will use a unique model system, the common marmoset (Callithrix jacchus), to tackle these problems at the cellular and behavioral levels. The marmoset provides several important advantages over other non-human primate species: a rich vocal repertoire, a high reproductive rate while in captivity, and a smooth brain allowing easy access to all parts of the cerebral cortex. In this application, we will advance this line of research by addressing several fundamental questions on auditory-vocal interaction mechanisms using newly developed wireless neural recording and brain cooling techniques. A prominent property associated with self-produced speech or vocalization is the inhibition of neural activity in auditory cortex.
In Aim 1, we will use feedbac perturbation techniques to study the dynamics of auditory-vocal interactions, both behaviorally and physiologically.
In Aim 2, we will study the role of rostral and caudal auditory cortical pathways in auditory-vocal interactions.
In Aim 3, we will determine the source of this vocalization-induced inhibition. Findings from the proposed study will shed lights on neural mechanisms responsible for vocal feedback processing in the primate brain and have implications for understanding how the auditory cortex operates during speaking and hearing.

Public Health Relevance

Understanding how the brain operates during hearing and speaking is important to the well being of everyone in the society. Findings of the present study will contribute to our understanding of neural mechanisms underlying vocal feedback processing in the brain. They will have important implications for understanding human speech processing mechanisms in both normal and pathological conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
4R01DC005808-13
Application #
9027827
Study Section
Auditory System Study Section (AUD)
Program Officer
Platt, Christopher
Project Start
2003-01-01
Project End
2017-02-28
Budget Start
2016-03-01
Budget End
2017-02-28
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Biomedical Engineering
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Eliades, Steven J; Wang, Xiaoqin (2017) Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear Res 348:98-111
Roy, Sabyasachi; Zhao, Lingyun; Wang, Xiaoqin (2016) Distinct Neural Activities in Premotor Cortex during Natural Vocal Behaviors in a New World Primate, the Common Marmoset (Callithrix jacchus). J Neurosci 36:12168-12179
Miller, Cory T; Freiwald, Winrich A; Leopold, David A et al. (2016) Marmosets: A Neuroscientific Model of Human Social Behavior. Neuron 90:219-33
Osmanski, Michael S; Song, Xindong; Guo, Yueqi et al. (2016) Frequency discrimination in the common marmoset (Callithrix jacchus). Hear Res 341:1-8
Wang, Xiaoqin (2016) The Ying and Yang of Auditory Nerve Damage. Neuron 89:680-2
Agamaite, James A; Chang, Chia-Jung; Osmanski, Michael S et al. (2015) A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J Acoust Soc Am 138:2906-28
Nelken, Israel; Bizley, Jennifer; Shamma, Shihab A et al. (2014) Auditory cortical processing in real-world listening: the auditory system going real. J Neurosci 34:15135-8
Zhou, Yi; Wang, Xiaoqin (2014) Spatially extended forward suppression in primate auditory cortex. Eur J Neurosci 39:919-33
Bartlett, Edward L (2013) The organization and physiology of the auditory thalamus and its role in processing acoustic features important for speech perception. Brain Lang 126:29-48
Eliades, Steven J; Wang, Xiaoqin (2013) Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex. J Neurophysiol 109:1638-57

Showing the most recent 10 out of 30 publications