This proposal focuses on investigating the mechanism of synaptic transmission at the inner hair cell (IHC) afferent synapse in the mammalian cochlea. This most peripheral chemical synapse in the auditory pathway serves as an interpreter translating the hair cell receptor potential into a train of excitatory postsynaptic potentials that activate action potentials in the afferent auditory nerve fibers. The specific features of the IHC afferent synapse critically determine how a sound signal is coded in the inner ear and transmitted to the brain via auditory nerve fiber activity.
Our aim i s to characterize pre- and postsynaptic mechanism that shape the postsynaptic activity in IHC afferent fibers. We will record postsynaptic activity using the whole cell patch clamp method. The recording sites will be the afferent fiber terminal directly at the inner hair cell synapse and the afferent fiber soma in the spiral ganglion in excised preparations of rat and mouse cochleae. To exactly describe the relationship between presynaptic stimulus and postsynaptic activity, we will make double recordings from IHCs and afferent fiber terminals. To affect transmitter release and define the quantal size, we will record excitatory postsynaptic currents and vary experimental conditions; i.e. changing the temperature or ionic environment and using release-affecting toxins. To understand postsynaptic determinants of synaptic transmission, we will provide a basic description of the waveform of the excitatory postsynaptic potential and its relation to the activation of action potentials. Using pharmacological tools, we will try to identify individual components that shape the postsynaptic potential waveform starting with a focus on different classes of potassium channels. We will also study the role of efferent inputs onto afferent fiber activity. Most recordings will be performed in the already established preparation using postnatal cochleae. In parallel we will extend our recordings to mature cochleae, as our ultimate aim is to understand both development and adult function of the IHC afferent synapse. These studies will further our knowledge of basic mechanisms of peripheral hearing and therefore also will lead to a better understanding of abnormal hearing and deafness.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC006476-02
Application #
6839464
Study Section
Integrative, Functional and Cognitive Neuroscience 8 (IFCN)
Program Officer
Donahue, Amy
Project Start
2004-01-01
Project End
2008-11-30
Budget Start
2004-12-01
Budget End
2005-11-30
Support Year
2
Fiscal Year
2005
Total Cost
$301,600
Indirect Cost
Name
Johns Hopkins University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wu, Jingjing Sherry; Vyas, Pankhuri; Glowatzki, Elisabeth et al. (2018) Opposing expression gradients of calcitonin-related polypeptide alpha (Calca/Cgrp?) and tyrosine hydroxylase (Th) in type II afferent neurons of the mouse cochlea. J Comp Neurol 526:425-438
Ye, Zhanlei; Goutman, Juan D; Pyott, Sonja J et al. (2017) mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea. J Physiol 595:3483-3495
Vyas, Pankhuri; Wu, Jingjing Sherry; Zimmerman, Amanda et al. (2017) Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol 18:139-151
Christensen, Sean B; Hone, Arik J; Roux, Isabelle et al. (2017) RgIA4 Potently Blocks Mouse ?9?10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia. Front Cell Neurosci 11:219
Roux, Isabelle; Wu, Jingjing Sherry; McIntosh, J Michael et al. (2016) Assessment of the expression and role of the ?1-nAChR subunit in efferent cholinergic function during the development of the mammalian cochlea. J Neurophysiol 116:479-92
Martinez-Monedero, Rodrigo; Liu, Chang; Weisz, Catherine et al. (2016) GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells. eNeuro 3:
Wu, Jingjing Sherry; Young, Eric D; Glowatzki, Elisabeth (2016) Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations. J Neurosci 36:10584-10597
Fuchs, P A; Glowatzki, E (2015) Synaptic studies inform the functional diversity of cochlear afferents. Hear Res 330:18-25
Sadeghi, Soroush G; Pyott, Sonja J; Yu, Zhou et al. (2014) Glutamatergic signaling at the vestibular hair cell calyx synapse. J Neurosci 34:14536-50
Korrapati, Soumya; Roux, Isabelle; Glowatzki, Elisabeth et al. (2013) Notch signaling limits supporting cell plasticity in the hair cell-damaged early postnatal murine cochlea. PLoS One 8:e73276

Showing the most recent 10 out of 26 publications