Little is known about what happens as animals learn to associate meaning with taste, although it is known that gustatory cortex (GC) and amygdala (AMG) are involved in the process. The goal of these experiments is to record simultaneously from these areas as rats learn to associate illness with a taste that they formerly thought palatable (this kind of learning is called conditioned taste aversion, or CTA). Ensembles of GC and AMG single neurons will be recorded through the entire learning process, as the rats progress from being naive to trained.
The specific aims of the project are: 1) to determine the aspects of temporal codes in both brain areas that change during learning, as well as how interactions between the areas change; 2) to examine whether GC and AMG are specifically involved in learned reflexes that are produced as the rats try to expel the newly noxious taste; 3) to test whether the inactivation of AMG during training keeps these changes from appearing during testing; and 4) to test whether the development of plasticity in AMG is a specific part of these changes in temporal coding. Overall, this project will shed light on the neural mechanisms underlying an experiential phenomenon that affects (sometimes adversely) the lives of all mammals, including humans.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC006666-04
Application #
7425897
Study Section
Neurobiology of Learning and Memory Study Section (LAM)
Program Officer
Davis, Barry
Project Start
2005-07-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
4
Fiscal Year
2008
Total Cost
$285,348
Indirect Cost
Name
Brandeis University
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Flores, Veronica L; Parmet, Tamar; Mukherjee, Narendra et al. (2018) The role of the gustatory cortex in incidental experience-evoked enhancement of later taste learning. Learn Mem 25:587-600
Flores, Veronica L; Moran, Anan; Bernstein, Max et al. (2016) Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose. Learn Mem 23:221-8
Baez-Santiago, Madelyn A; Reid, Emily E; Moran, Anan et al. (2016) Dynamic taste responses of parabrachial pontine neurons in awake rats. J Neurophysiol 115:1314-23
Sadacca, Brian F; Mukherjee, Narendra; Vladusich, Tony et al. (2016) The Behavioral Relevance of Cortical Neural Ensemble Responses Emerges Suddenly. J Neurosci 36:655-69
Levitan, David; Fortis-Santiago, Yaihara; Figueroa, Joshua A et al. (2016) Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ?-Inhibitory Peptide (ZIP). J Neurosci 36:10654-10662
Li, Jennifer X; Maier, Joost X; Reid, Emily E et al. (2016) Sensory Cortical Activity Is Related to the Selection of a Rhythmic Motor Action Pattern. J Neurosci 36:5596-607
Maier, Joost X; Blankenship, Meredith L; Li, Jennifer X et al. (2015) A Multisensory Network for Olfactory Processing. Curr Biol 25:2642-50
Moran, Anan; Katz, Donald B (2014) Sensory cortical population dynamics uniquely track behavior across learning and extinction. J Neurosci 34:1248-57
Pavão, Rodrigo; Piette, Caitlin E; Lopes-dos-Santos, Vítor et al. (2014) Local field potentials in the gustatory cortex carry taste information. J Neurosci 34:8778-87
Monk, Kevin J; Rubin, Benjamin D; Keene, Jennifer C et al. (2014) Licking microstructure reveals rapid attenuation of neophobia. Chem Senses 39:203-13

Showing the most recent 10 out of 29 publications