This proposal investigates synaptic transmitters in mammalian taste buds.
My Specific Aims i nclude identifying the principal transmitters released by mouse taste cells during gustatory stimulation and determining where these transmitters act. Transmitters that have been identified to date and shown to be released by taste cells include serotonin, ATP, and norepinephrine. However, there is strong evidence that there are others, including glutamate, acetylcholine, and certain peptides. To complete the Aims, we will use a biosensor technique we developed and optimized in the previous funding period. Our biosensors consist of genetically-engineered CHO cells that are very sensitive to specific transmitters. We will use functional Ca2+ imaging to measure taste-evoked activity in taste cells and biosensors. We will correlate our findings with immunostaining for the receptors, transporters, and biosynthetic enzymes of candidate transmitters to confirm their presence and action in taste buds. This approach will allow us to answer such questions as: what are the transmitters in taste buds? Are there different transmitters for different tastes? How do taste cells interact via these transmitters? The long-term goal of this project is to construct a diagram of synaptic interactions that take place in the taste bud during taste stimulation. Understanding these interactions may help explain how different tastes (sweet, sour, salty, bitter, umami) are discriminated.

Public Health Relevance

This project aims to study transmitters involved in taste reception. Identifying taste transmitters and their receptors may allow pharmacological interventions that enhance the quality of life, alter diet selection, combat obesity, reduce aversive tastes, or in the rare but debilitating condition of dysgeusia and ageusia, may suggest new therapies. Identifying taste transmitters may also help explain taste alterations that occur as side effects of certain drugs and which reduce patient compliance in taking their medications.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC007630-08
Application #
8577959
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
2005-07-01
Project End
2016-11-30
Budget Start
2013-12-01
Budget End
2014-11-30
Support Year
8
Fiscal Year
2014
Total Cost
$292,613
Indirect Cost
$101,363
Name
University of Miami School of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
052780918
City
Coral Gables
State
FL
Country
United States
Zip Code
33146
Roper, Stephen D (2014) Sensory end-organs: signal processing in the periphery: a symposium presented at the 2013 Annual Meeting of the Society for Neuroscience, San Diego, CA, USA. J Physiol 592:3383-5
Roper, Stephen D (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24:71-9
Roper, Stephen D (2013) Introduction to signal processing in peripheral sensory organs. Semin Cell Dev Biol 24:1-2
Huang, Yijen A; Grant, Jeff; Roper, Stephen (2012) Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds. PLoS One 7:e30662
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth et al. (2012) Adenosine enhances sweet taste through A2B receptors in the taste bud. J Neurosci 32:322-30
Grant, Jeff (2012) Tachykinins stimulate a subset of mouse taste cells. PLoS One 7:e31697
Dvoryanchikov, Gennady; Huang, Yijen A; Barro-Soria, Rene et al. (2011) GABA, its receptors, and GABAergic inhibition in mouse taste buds. J Neurosci 31:5782-91
Huang, Yijen A; Pereira, Elizabeth; Roper, Stephen D (2011) Acid stimulation (sour taste) elicits GABA and serotonin release from mouse taste cells. PLoS One 6:e25471
Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M Caroline et al. (2011) Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 17:888-92
Huang, Yijen A; Stone, Leslie M; Pereira, Elizabeth et al. (2011) Knocking out P2X receptors reduces transmitter secretion in taste buds. J Neurosci 31:13654-61

Showing the most recent 10 out of 15 publications