With the identification of prestin as the elusive lateral membrane motor protein of the outer hair cell (OHC), we are faced with the possibility of understanding how this single molecule can affect the mammal's exquisite sense of hearing. To that end, we have focused our interest on determining what protein structures may give rise to the motor's known biophysical attributes, including its temperature, tension, and voltage dependence. We hypothesize that these molecular activities arise and/or are influenced by interactions of prestin's intracellular C and N termini with other intracellular proteins and anions, and possibly by multimeric interactions, as well. We propose to target a focused set of aims, including 1) determine the contribution of prestin's C and N termini to prestin's signature biophysical attributes, 2) determine prestin's trafficking route in a prestin cell line that we have developed, and 3) determine what structures are different between prestin (slc26a5) and its closet family member slc26a6 that account for prestin's nonlinear capacitance. In order to reach these goals, we will employ a host of electrophysiological, molecular biological and biochemical methods. We believe that the information that we obtain through these studies will aid in understanding how the OHC enables us to hear so well and in turn how we might combat pathologies of the OHC that afflict millions.

Public Health Relevance

With the identification of prestin as the elusive lateral membrane motor protein of the outer hair cell (OHC), we are faced with the possibility of understanding how this single molecule can affect the mammal's exquisite sense of hearing. To that end, we have focused our interest on determining what protein structures may give rise to the motor's known biophysical attributes, and how the protein trafficks within the cell. We hypothesize that understanding these molecular activities will aid in understanding how the OHC enables us to hear so well and in turn how we might combat pathologies of the OHC that afflict millions.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC008130-08
Application #
8605872
Study Section
Auditory System Study Section (AUD)
Program Officer
Freeman, Nancy
Project Start
2006-04-01
Project End
2015-01-31
Budget Start
2014-02-01
Budget End
2015-01-31
Support Year
8
Fiscal Year
2014
Total Cost
$306,390
Indirect Cost
$121,260
Name
Yale University
Department
Surgery
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Bian, Shumin; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph (2013) Real time measures of prestin charge and fluorescence during plasma membrane trafficking reveal sub-tetrameric activity. PLoS One 8:e66078
Wu, T; Song, L; Shi, X et al. (2011) Effect of capsaicin on potassium conductance and electromotility of the guinea pig outer hair cell. Hear Res 272:117-24
Frucht, Corey S; Santos-Sacchi, Joseph; Navaratnam, Dhasakumar S (2011) MicroRNA181a plays a key role in hair cell regeneration in the avian auditory epithelium. Neurosci Lett 493:44-8
Frucht, Corey S; Uduman, Mohamed; Kleinstein, Steven H et al. (2011) Gene expression gradients along the tonotopic axis of the chicken auditory epithelium. J Assoc Res Otolaryngol 12:423-35
Frucht, Corey S; Uduman, Mohamed; Duke, Jamie L et al. (2010) Gene expression analysis of forskolin treated basilar papillae identifies microRNA181a as a mediator of proliferation. PLoS One 5:e11502
Ashmore, J; Avan, P; Brownell, W E et al. (2010) The remarkable cochlear amplifier. Hear Res 266:1-17
Bai, Jun-Ping; Surguchev, Alexei; Bian, Shumin et al. (2010) Combinatorial cysteine mutagenesis reveals a critical intramonomer role for cysteines in prestin voltage sensing. Biophys J 99:85-94
Bian, Shumin; Koo, Bon W; Kelleher, Stephen et al. (2010) A highly expressing Tet-inducible cell line recapitulates in situ developmental changes in prestin's Boltzmann characteristics and reveals early maturational events. Am J Physiol Cell Physiol 299:C828-35
Bai, Jun-Ping; Surguchev, Alexei; Montoya, Simone et al. (2009) Prestin's anion transport and voltage-sensing capabilities are independent. Biophys J 96:3179-86