Auditory research into the neural basis of communication sound processing has generally been conducted without accounting for the social contexts in which communication naturally occurs. Hence, how the auditory system is able detect, discriminate and categorize communication calls despite natural speaker variability is poorly understood, as are the mechanisms by which social interactions affect this processing. Our long-term goal is to uncover the circuit, cellular and molecular mechanisms underlying the auditory system's encoding of socially-acquired vocalizations, so that causes underlying deficits in natural communication processing can be inferred. We pursue this in a mouse model of ultrasound communication wherein two categories of calls (those emitted by mouse pups and by adult males) carry different meanings and can have different levels of behav- ioral relevance to a female. The objective here is to uncover how the representation of these call categories is transformed by hierarchical processing from a primary to a higher-order auditory cortical field, and how differ- ent natural social experiences with the calls produce coding changes. Our central hypothesis is that the trans- formation refines call coding to facilitate communication tasks, and that social experience and neurochemical systems modify this neural transformation as behavioral relevance is acquired. The rationale for this research is that once we know the manner by which neural plasticity in auditory cortex shapes the coding of behaviorally relevant calls, we will be able to exploit the transgenic advantages of the mouse model to dissect the detailed mechanisms enabling these changes. Using extracellular electrophysiology in awake mice, we will test our hy- pothesis with three specific aims. First, we will determine how the neural transformation normally functions to refine the encoding of behaviorally relevant calls by recording from animals that recognize the significance of pup calls (mothers). Second, we will determine how social experience with pups modifies this neural transfor- mation by recording from virgin females that help care for pups (co-carers). Third, we will determine how a key social neurochemical implicated in pup call recognition, estrogen, works with pup care experience to modify the neural transformation by recording from hormonally manipulated co-carers. This proposal's significance lies in its unique ability to bridge the scientific gap between sensory and social/behavioral neuroscience in an animal model in which we can pursue future studies of a high level auditory function (communication) from a system down to a molecular level.

Public Health Relevance

This research will enable us to discover mechanisms underlying the natural functioning of the processing stream between a primary and higher-order auditory cortical field in the context of species-specific communica- tion. By elucidating the normal operation of this system, our results will be important in implicating aspects of communication coding and plasticity that may fail in auditory processing disorders, social disorders with audi- tory dysfunctions, hearing loss and temporal lobe strokes.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC008343-09
Application #
8706843
Study Section
Auditory System Study Section (AUD)
Program Officer
Platt, Christopher
Project Start
2006-07-01
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
9
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Ivanova, Tamara N; Gross, Christina; Mappus, Rudolph C et al. (2017) Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 24:612-621
Banerjee, Sunayana B; Gutzeit, Vanessa A; Baman, Justin et al. (2017) Perineuronal Nets in the Adult Sensory Cortex Are Necessary for Fear Learning. Neuron 95:169-179.e3
Shepard, Kathryn N; Chong, Kelly K; Liu, Robert C (2016) Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning. eNeuro 3:
Makinson, Christopher D; Dutt, Karoni; Lin, Frank et al. (2016) An Scn1a epilepsy mutation in Scn8a alters seizure susceptibility and behavior. Exp Neurol 275 Pt 1:46-58
Garcia-Lazaro, Jose A; Shepard, Kathryn N; Miranda, Jason A et al. (2015) An Overrepresentation of High Frequencies in the Mouse Inferior Colliculus Supports the Processing of Ultrasonic Vocalizations. PLoS One 10:e0133251
Shepard, Kathryn N; Lin, Frank G; Zhao, Charles L et al. (2015) Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. J Neurosci 35:2636-45
Kirste, Imke; Nicola, Zeina; Kronenberg, Golo et al. (2015) Is silence golden? Effects of auditory stimuli and their absence on adult hippocampal neurogenesis. Brain Struct Funct 220:1221-8
Shepard, Kathryn N; Liles, L Cameron; Weinshenker, David et al. (2015) Norepinephrine is necessary for experience-dependent plasticity in the developing mouse auditory cortex. J Neurosci 35:2432-7
Liu, Robert C (2015) Sensory systems: The yin and yang of cortical oxytocin. Nature 520:444-5
Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K et al. (2014) Adult plasticity in the subcortical auditory pathway of the maternal mouse. PLoS One 9:e101630

Showing the most recent 10 out of 22 publications