Access to the inner ear, specifically the cochlea, is required for cochlear implant (CI) surgery, in which an electrode array is used to stimulate the auditory nerve and allow deaf people to hear. More than 240,000 CIs have been placed worldwide with approximately 70,000 performed in the USA. Projections indicate that up to 750,000 Americans with severe hearing loss may benefit from CI. In our ongoing NIH-funded project (R01 DC008408), we have demonstrated the feasibility of percutaneous cochlear implantation (PCI). PCI reduces CI surgery to a single pass of a drill from the lateral skull surface to the cochlea. The drill path is planned and executed using image-guided technology so as to avoid vital adjacent anatomy (e.g. the facial nerve) and hit the target-the scala tympani of the cochlea. In clinical trials we have validated the PCI technique on 31 adult patients with statistical projections indicating avoidance of vital anatomy at a rate similar to that of traditioal surgery. Furthermore, we have begun implementation of PCI by developing instruments and techniques for drilling and have performed incrementally deeper drilling on 10 additional patients the most recent of which had complete PCI performed. The potential benefits of PCI are many including less tissue removal and shorter time of surgical intervention. In the attached submission, we propose to build on our successful development of PCI and explore potential benefits by (i) extending our Phase I study by one year in order to produce a robust clinical protocol and (ii) carrying out a Phase II study consisting of a randomized clinical trial comparing PCI to traditional CI surgery. More specifically, during Phase I we will (a) further refine our imaging and planning software to optimize accuracy and usability, (b) implement redundant safety checks to minimize risk of injury to the facial nerve, (c) investigate three options for creating the opening into the cochlea via the PCI track and picking the best one for the final protocol, (d) investigate the use of endoscopes for verification of accurate targeting of the scala tympani component of the cochlea, and (e) finalize design of an insertion tool for final CI electrode placement. In the Phase II randomized trial we will compare, head-to-head, traditional CI and PCI surgery with formal endpoints being (a) amount of tissue resected during intervention and (b) time of intervention. These formal metrics will be used to assess (a) the impact of the procedure on individual patients, which may portend quicker recovery and quicker CI activation for PCI patients, and (b) the overall cost of intervention which despite the need for additional equipment may be cheaper for PCI due to decreased operative time. While our study is set up to demonstrate statistically significant reductions in both volume of tissue removed and time of intervention, we will remain open to other potential benefits (e.g. more consistent electrode placement in the scala tympani with PCI). If our study is successful, we posit that PCI will become the preferred technique for CI.

Public Health Relevance

Within the United States, approximately 70,000 deaf individuals have benefitted from cochlear implantation (CI), a 2+ hour surgery that involves removal of a portion of the bone behind the external ear to reach the inner ear, the cochlea, and place a wire which stimulates the cochlea allowing hearing. Using image guided surgical techniques-similar to GPS technology used to provide geographic directions-we have shown that a much less invasive surgical approach is possible by tracking and controlling the path of a drill such that the cochlea may be reached by a single drill pass-we call this technique Percutaneous Cochlear Implantation (PCI). After performing extensive research developing this technique, we have recently performed the world's first PCI and now propose to compare PCI to traditional CI surgery via a randomized clinical trial looking at time of surgery and injury of surrounding tissue.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Donahue, Amy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Wang, Jianing; Dawant, Benoit M; Labadie, Robert F et al. (2017) Retrospective Evaluation of a Technique for Patient-Customized Placement of Precurved Cochlear Implant Electrode Arrays. Otolaryngol Head Neck Surg 157:107-112
Zhang, Dongqing; Liu, Yuan; Noble, Jack H et al. (2017) Localizing landmark sets in head CTs using random forests and a heuristic search algorithm for registration initialization. J Med Imaging (Bellingham) 4:044007
Chakravorti, Srijata; Bussey, Brian J; Zhao, Yiyuan et al. (2017) Cochlear implant phantom for evaluating computed tomography acquisition parameters. J Med Imaging (Bellingham) 4:045002
Zuniga, M Geraldine; Rivas, Alejandro; Hedley-Williams, Andrea et al. (2017) Tip Fold-over in Cochlear Implantation: Case Series. Otol Neurotol 38:199-206
Rivas, Alejandro; Cakir, Ahmet; Hunter, Jacob B et al. (2017) Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays. Otol Neurotol 38:339-346
Fichera, Loris; Dillon, Neal P; Zhang, Dongqing et al. (2017) Through the Eustachian Tube and Beyond: A New Miniature Robotic Endoscope to See Into The Middle Ear. IEEE Robot Autom Lett 2:1488-1494
Zhang, Dongqing; Liu, Yuan; Noble, Jack H et al. (2016) Automatic localization of landmark sets in head CT images with regression forests for image registration initialization. Proc SPIE Int Soc Opt Eng 9784:
Bennett, Marc L; Zhang, Dongqing; Labadie, Robert F et al. (2016) Comparison of Middle Ear Visualization With Endoscopy and Microscopy. Otol Neurotol 37:362-6
Noble, Jack H; Hedley-Williams, Andrea J; Sunderhaus, Linsey et al. (2016) Initial Results With Image-guided Cochlear Implant Programming in Children. Otol Neurotol 37:e63-9
Kratchman, Louis B; Schuster, Daniel; Dietrich, Mary S et al. (2016) Force Perception Thresholds in Cochlear Implantation Surgery. Audiol Neurootol 21:244-249

Showing the most recent 10 out of 65 publications