Neuromuscular denervation is a common consequence of peripheral nerve injuries and neurological diseases. There is a pressing need to seek novel approaches of reinnervation for restoration of paralyzed muscles as the presently used methods generally result in poor functional recovery. The global hypothesis driving this project is that better outcomes could be achieved by reinnervating a paralyzed muscle with an abundant source of intact nerve terminals and motor endplates. This idea promoted us to develop a nerve- muscle-endplate band grafting (NMEG) method to reinnervate paralyzed muscles. Cervical strap muscles were selected to perform feasibility studies in a rat model. The NMEG was harvested from the omohyoid (OH) muscle and then transplanted to the experimentally paralyzed sternomastoid (SM) muscle. Meanwhile, nerve- muscle pedicle (NMP) and end-to-end anastomosis (EEA) reinnervation procedures were also carried out for comparison. Our pilot studies using immediate reinnervation model showed that NMEG resulted in successful neuroregeneration and better functional recovery than the NMP and EEA. This research is to determine the efficacy of the NMEG for the immediate and delayed reinnervation of paralyzed cervical strap muscles as compared with the classic EEA technique. Studies designed in this proposal will document the fundamental neural basis of the functional recovery and other major factors influencing outcomes. We hypothesized that the extent of functional recovery of a reinnervated muscle is largely dependent on both the quantity of the reestablished nerve-muscle contacts and the denervation induced muscular alterations and that the NMEG would be a better option for muscle reinnervation than the commonly used EEA and other methods. These hypotheses will be tested with the following 3 specific aims.
Specific Aim 1 is to evaluate functional recovery of the reinnervated muscles by analyzing electromyographic (EMG) recordings, muscle force and movement measurements, and distribution of the glycogen depleted muscle fibers.
Specific Aim 2 is to demonstrate the neural basis of the functional restoration of the reinnervated muscles by quantifying the retrograde horseradish peroxidase (HRP) labeled motoneurons, regenerating axons and sprouts, and newly formed motor endplates.
Specific Aim 3 is to explore procedure-related and time-dependent morphological, immunocytochemical, and biochemical changes in the reinnervated muscles by analyzing muscle mass, fiber size, fiber type grouping, and fiber type and myosin heavy chain (MHC) composition. The results will allow the reliable documentation of the efficacy of the NMEG in rehabilitation of muscle paralysis. The significance of the proposed work extends far beyond what is currently understood. Once the advantages of the NMEG are fully documented by extensive animal studies, the impact of this research on science and health care could be substantial as the data obtained from this research are useful for ultimate clinical application in the near future to the treatment of patients with paralytic neuromuscular disorders. As an entirely satisfactory solution to restoration of the paralyzed skeletal muscles has not yet been found, we developed a new technique (nerve-muscle-endplate band grafting) to reinnervate paralyzed cervical strap muscles in a rat model. Our preliminary work showed that this technique results in better outcomes than currently used methods. The data obtained from this research is useful for future clinical application to treat muscle paralysis. ? ? ? ?

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Clinical Neuroplasticity and Neurotransmitters Study Section (CNNT)
Program Officer
Shekim, Lana O
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Hackensack University Medical Center
United States
Zip Code
Sobotka, Stanislaw; Mu, Liancai (2015) Muscle reinnervation with nerve-muscle-endplate band grafting technique: correlation between force recovery and axonal regeneration. J Surg Res 195:144-51
Sobotka, Stanislaw; Mu, Liancai (2013) Comparison of muscle force after immediate and delayed reinnervation using nerve-muscle-endplate band grafting. J Surg Res 179:e117-26
Skill, Nicholas J; Jianmin, Wu; Yan, Xu et al. (2013) Lysophospholipid variants in hepatocellular carcinoma. J Surg Res 182:241-9
Sobotka, Stanislaw; Mu, Liancai (2013) Force recovery and axonal regeneration of the sternomastoid muscle reinnervated with the end-to-end nerve anastomosis. J Surg Res 182:e51-9
Zhang, Xiaolin; Mu, Liancai; Su, Hungxi et al. (2011) Locations of the motor endplate band and motoneurons innervating the sternomastoid muscle in the rat. Anat Rec (Hoboken) 294:295-304
Sobotka, Stanislaw; Mu, Liancai (2011) Force characteristics of the rat sternomastoid muscle reinnervated with end-to-end nerve repair. J Biomed Biotechnol 2011:173471
Mu, Liancai; Sobotka, Stanislaw; Su, Hungxi (2011) Nerve-muscle-endplate band grafting: a new technique for muscle reinnervation.. Neurosurgery 69:ons208-24; discussion ons224
Sobotka, Stanislaw; Mu, Liancai (2010) Characteristics of tetanic force produced by the sternomastoid muscle of the rat. J Biomed Biotechnol 2010:194984
Mu, L; Sanders, I (2010) Sihler's whole mount nerve staining technique: a review. Biotech Histochem 85:19-42