It is currently understood that arterial baroreceptors control sympathetic nervous system tone, while vestibular end organs provide afferent input to a vestibulo-sympathetic reflex that normally augments the compensatory baroreflex. However, the chemical anatomy, connectivity and synaptology of the neural pathways underlying this integration remain largely unknown. The overall goal of the proposed project is to identify the neurotransmitters and modulators involved in mediating vestibulo-autonomic synaptic interactions. The four aims address the chemoanatomy and synaptology of these vestibular projections in adult rats and evaluate the overall hypothesis that different transmitter/modulator signatures and distinct synaptic architectural arrangements are utilized by vestibular projections to the caudal and rostral ventrolateral medulla (CVLM and RVLM, respectively).
Aim 1 is to identify the locations of vestibulo-medullary and medullo- sympathetic projection neurons, determine the relative proportions of vestibular projections to CVLM and RVLM, identify the primary amino acid neurotransmitter(s) utilized by these pathways and determine whether these projections terminate on glutamatergic and/or GABAergic neurons in CVLM and RVLM.
Aim 2 is to determine whether vestibular terminals in CVLM and RVLM co-express IAA-RP and/or L-citrulline.
Aim 3 is to conduct a qualitative analysis of the main neurotransmitters and modulators of vestibulo-recipient cells in RVLM and CVLM, to test the hypothesis that glutamatergic vestibular afferents terminate on interneurons and on distal dendrites of GABAergic/IAA-RP-containing CVLM neurons, GABAergic and noradrenergic dendrites in RVLM, and directly on the somata of glutamatergic/IAA-RP-containing RVLM neurons with direct projections to the spinal cord.
Aim 4 is to visualize and quantify parameters of vestibulo-sympathetic synaptology, and will test the hypothesis that the synaptology of vestibular terminals in RVLM involves complex interactions among multiple transmitter systems, whereas the synaptology of vestibulo-sympathetic terminals in CVLM reflects direct axo-dendritic contacts with CVLM output neurons. Throughout the project, the vestibulo-sympathetic pathways will be identified using anterograde and retrograde tract-tracing in tissue that will be further processed using additional immunofluorescent tags to identify transmitters and modulators of interest. Ultrastructural studies will employ immunogold labels to identify and quantify terminals and synaptic contacts. These studies will characterize the neurotransmitters, modulators and synaptic articulations utilized by vestibular projections to sympathetic pre-motor medullary neuron pools and will yield qualitative analyses and quantitative estimates of parameters of their synaptic architecture. This information does not currently exist in the literature, and is important for the development of evidence-based pharmacotherapeutics for the treatment of vestibulo-autonomic disorders such as orthostatic hypotension, as well as the development of more specific anti-hypertensive medications that do not elicit disabling vestibular side-effects such as dizziness and vertigo.

Public Health Relevance

Orthostatic hypotension and vestibular side effects of drugs targeting the sympathetic nervous system (e.g. anti-hypertensive medications) impact large populations, especially the elderly. However, little is known about the neurochemical organization of vestibulo-sympathetic pathways. This project will provide fundamental information about the chemoanatomic and synaptic organization of vestibular projections to cardiovascular neurons in the ventrolateral medulla, may suggest new drug therapies to ameliorate orthostatic hypotension and intolerance, and may lead to the development of more specific anti-hypertensive medications that do not elicit disabling vestibular side effects such as dizziness and vertigo.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC008846-02
Application #
7570038
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (02))
Program Officer
Cyr, Janet
Project Start
2008-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
2
Fiscal Year
2009
Total Cost
$344,038
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Neurology
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Holstein, Gay R; Friedrich Jr, Victor L; Martinelli, Giorgio P (2016) Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons. Front Neuroanat 10:7
Holstein, Gay R; Friedrich Jr, Victor L; Martinelli, Giorgio P (2016) Imidazoleacetic acid-ribotide in vestibulo-sympathetic pathway neurons. Exp Brain Res 234:2747-60
Yakushin, Sergei B; Martinelli, Giorgio P; Raphan, Theodore et al. (2014) Vasovagal oscillations and vasovagal responses produced by the vestibulo-sympathetic reflex in the rat. Front Neurol 5:37
Holstein, Gay R; Friedrich Jr, Victor L; Martinelli, Giorgio P (2014) Projection neurons of the vestibulo-sympathetic reflex pathway. J Comp Neurol 522:2053-74
Cohen, Bernard; Martinelli, Giorgio P; Raphan, Theodore et al. (2013) The vasovagal response of the rat: its relation to the vestibulosympathetic reflex and to Mayer waves. FASEB J 27:2564-72
Highstein, Stephen M; Holstein, Gay R (2012) The anatomical and physiological framework for vestibular prostheses. Anat Rec (Hoboken) 295:2000-9
Holstein, Gay R; Friedrich Jr, Victor L; Martinelli, Giorgio P et al. (2012) Fos expression in neurons of the rat vestibulo-autonomic pathway activated by sinusoidal galvanic vestibular stimulation. Front Neurol 3:4
Cohen, Bernard; Yakushin, Sergei B; Holstein, Gay R (2012) What does galvanic vestibular stimulation actually activate: response. Front Neurol 3:148
Bozdagi, O; Wang, X B; Martinelli, G P et al. (2011) Imidazoleacetic acid-ribotide induces depression of synaptic responses in hippocampus through activation of imidazoline receptors. J Neurophysiol 105:1266-75
Cohen, Bernard; Martinelli, Giorgio P; Ogorodnikov, Dmitri et al. (2011) Sinusoidal galvanic vestibular stimulation (sGVS) induces a vasovagal response in the rat. Exp Brain Res 210:45-55

Showing the most recent 10 out of 15 publications