The Usher Syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by congenital deafness and retinitis pigmentosa. It is the most common cause of deafness accompanied by blindness. Hair cell replacement or regeneration therapies have not really solved the deafness problem of ear diseases. An alternative to replacing lost hair cells is to prevent their loss in the first place, which is a particularly promising line of investigation. Many USH patients will benefit from cochlear implants, but preservation of spiral ganglion cells is important for success of cochlear implants because a minimal density of spiral ganglion cells is required for effective cochlear implants. Residual hair cells present in the cochlea could promote the survival of spiral ganglion neurons by release of neurotrophic substances. Therefore, discovery of therapeutic targets that prevent hair cell death is the key to helping Usher 1 patients to respond to cochlear implants and other treatment options successfully. Mouse models facilitate experiments to determine the function of the various genes involved in Usher disease. We have developed mouse models for Usher syndrome. Thus, we propose the following specific aims: 1) identify the mutation in and characterize a new mouse deafness model (for Usher 1 syndrome and presbycusis) that provides an ideal window of time for evaluating drug therapy;2) identify key molecules and mechanisms that lead to hair cell death and hearing loss in the models for the Usher 1 syndrome;3) prove the concept that genetic hearing loss and hair cell death can be prevented by otoprotection therapy. Results of the proposed research will benefit human health.

Public Health Relevance

Usher Syndrome (USH) accounts for 6% of the congenitally deaf population and more than 50% of the deaf- blind population. Discovery of therapeutic targets that prevent hair cell death is the key to helping Usher 1 patients to respond to cochlear implants and other treatment options successfully. We propose to develop a new mouse deafness model, a model for Usher 1 syndrome and presbycusis, which has an ideal window of time for evaluating drug therapy.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Auditory System Study Section (AUD)
Program Officer
Watson, Bracie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Melki, Sami J; Li, Yiping; Semaan, Maroun T et al. (2014) A mouse model validates the utility of electrocochleography in verifying endolymphatic hydrops. J Assoc Res Otolaryngol 15:413-21
Crawley, Scott W; Shifrin Jr, David A; Grega-Larson, Nathan E et al. (2014) Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Cell 157:433-46
Ohmen, Jeffrey; Kang, Eun Yong; Li, Xin et al. (2014) Genome-wide association study for age-related hearing loss (AHL) in the mouse: a meta-analysis. J Assoc Res Otolaryngol 15:335-52
Zhang, Jin; Xu, Min; Zheng, Qingyin et al. (2014) Blocking macrophage migration inhibitory factor activity alleviates mouse acute otitis media in vivo. Immunol Lett 162:101-8
Wick, Cameron C; Semaan, Maroun T; Zheng, Qing Yin et al. (2014) A Genetic Murine Model of Endolymphatic Hydrops: The Phex Mouse. Curr Otorhinolaryngol Rep 2:144-151
Han, F; Yu, H; Zheng, T et al. (2013) Otoprotective effects of erythropoietin on Cdh23erl/erl mice. Neuroscience 237:1-6
Semaan, Maroun T; Zheng, Qing Y; Han, Fengchan et al. (2013) Characterization of neuronal cell death in the spiral ganglia of a mouse model of endolymphatic hydrops. Otol Neurotol 34:559-69
Zhang, Yan-Xia; Yue, Zhen; Wang, Ping-Yu et al. (2013) Cisplatin upregulates MSH2 expression by reducing miR-21 to inhibit A549 cell growth. Biomed Pharmacother 67:97-102
Liu, Siwei; Li, Shengli; Zhu, Hongliang et al. (2012) A mutation in the cdh23 gene causes age-related hearing loss in Cdh23(nmf308/nmf308) mice. Gene 499:309-17
Han, F; Yu, H; Tian, C et al. (2012) A new mouse mutant of the Cdh23 gene with early-onset hearing loss facilitates evaluation of otoprotection drugs. Pharmacogenomics J 12:30-44

Showing the most recent 10 out of 22 publications