Olfactory Signaling, Cilia, and Sensory Disorders The long-range goal of this proposal is to elucidate the mechanisms underlying the transport of odorant signaling proteins into mammalian olfactory cilia and their alterations in cilia-related disorders. Olfactory dysfunction in the general population is frequent, affecting at least 2.5 million people in the U.S. alone. In at least 20% of the cases the etiology of the chemosensory disturbance cannot be identified. Recently, we were one of the first to demonstrate olfactory dysfunction as a clinical manifestation of an emerging class of human genetic disorders, termed ciliopathies, which involve defects in ciliary assembly and/or protein transport. The enrichment of signaling proteins in the cilia of olfactory sensory neurons (OSNs) is essential for odor detection, however surprisingly little is known regarding the mechanisms regulating protein trafficking into olfactory cilia. We have recently identified 3 novel regulatory proteins as part of a multiprotein complexe in the olfactory system that likely participates in important steps of ciliary transport. The first, CEP290, is a basal body protein localized to dendritic knobs of OSNs. We have discovered that hypomorphic mutations in this protein selectively inhibit G-protein trafficking to cilia resulting in severe impairment of olfactory function. The second, a splice variant of Retinitis Pigmentosa GTPase Regulator (RPGR), RPGRORF15, is associated with sensory dysfunction in the retina. RPGRORF15 is localized to the knobs and dendrites of OSNs and a mutation of this isoform results in olfactory dysfunction in mice. The third, KIF17, is a kinesin motor protein that we have shown, in a heterologous system, to be required for ciliary enrichment of the olfactory CNG channel and is endogenously expressed in the cilia of native OSNs. We have found that each of these components is associated with other known ciliary, basal body, and microtubule transport proteins in OSNs however, their precise role in the mammalian olfactory system is unclear. We hypothesize that, in OSNs, CEP290, RPGRORF15, and KIF17 are components of the ciliary transport pathway which orchestrate the trafficking of signaling proteins by assembly of multiprotein complexes in the basal body/cilia compartment. Mutations in these components alter protein interactions leading to the mislocalization of signaling molecules and a loss of olfactory function. Therefore, in Specific Aim 1 we will define the mechanism by which CEP290 regulates trafficking of olfactory G-proteins to cilia.
In Specific Aim 2, we will elucidate the function of RPGRORF15 in olfactory function and protein trafficking to cilia.
In Specific Aim 3, we will determine the role of KIF17 in olfactory signaling protein localization to cilia. Successful completion of our proposed studies will afford new insights into the poorly understood mechanisms of ciliary trafficking in OSNs and the regulation of sensory perception while emphasizing that olfactory dysfunction represents an important clinical manifestation of ciliary disease.

Public Health Relevance

In the nose, neurons involved in smell have many cilia, hair-like projections into the nasal cavity, which contain all of the proteins responsible for detecting odors. The goal of this proposal is to understand how olfactory proteins get to the cilia and why genetic mutations in proteins of these cilia result in the loss of smell.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC009606-05
Application #
8303113
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
2008-07-17
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$334,336
Indirect Cost
$110,648
Name
University of Michigan Ann Arbor
Department
Pharmacology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
McIntyre, Jeremy C; Williams, Corey L; Martens, Jeffrey R (2013) Smelling the roses and seeing the light: gene therapy for ciliopathies. Trends Biotechnol 31:355-63
Fan, Shuling; Whiteman, Eileen L; Hurd, Toby W et al. (2011) Induction of Ran GTP drives ciliogenesis. Mol Biol Cell 22:4539-48
Kaplan, Oktay I; Molla-Herman, Anahi; Cevik, Sebiha et al. (2010) The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J Cell Sci 123:3966-77
Dishinger, John F; Kee, Hooi Lynn; Jenkins, Paul M et al. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat Cell Biol 12:703-10
Jenkins, Paul M; Zhang, Lian; Thomas, Gary et al. (2009) PACS-1 mediates phosphorylation-dependent ciliary trafficking of the cyclic-nucleotide-gated channel in olfactory sensory neurons. J Neurosci 29:10541-51
Jenkins, Paul M; McEwen, Dyke P; Martens, Jeffrey R (2009) Olfactory cilia: linking sensory cilia function and human disease. Chem Senses 34:451-64
Layman, W S; McEwen, D P; Beyer, L A et al. (2009) Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet 18:1909-23