Olfactory Signaling, Cilia, and Sensory Disorders The long-range goal of this proposal is to elucidate the mechanisms underlying the transport of odorant signaling proteins into mammalian olfactory cilia and their alterations in cilia-related disorders. Olfactory dysfunction in the general population is frequent, affecting at least 2.5 million people in the U.S. alone. In at least 20% of the cases the etiology of the chemosensory disturbance cannot be identified. Recently, we were one of the first to demonstrate olfactory dysfunction as a clinical manifestation of an emerging class of human genetic disorders, termed ciliopathies, which involve defects in ciliary assembly and/or protein transport. The enrichment of signaling proteins in the cilia of olfactory sensory neurons (OSNs) is essential for odor detection, however surprisingly little is known regarding the mechanisms regulating protein trafficking into olfactory cilia. We have recently identified 3 novel regulatory proteins as part of a multiprotein complexe in the olfactory system that likely participates in important steps of ciliary transport. The first, CEP290, is a basal body protein localized to dendritic knobs of OSNs. We have discovered that hypomorphic mutations in this protein selectively inhibit G-protein trafficking to cilia resulting in severe impairment of olfactory function. The second, a splice variant of Retinitis Pigmentosa GTPase Regulator (RPGR), RPGRORF15, is associated with sensory dysfunction in the retina. RPGRORF15 is localized to the knobs and dendrites of OSNs and a mutation of this isoform results in olfactory dysfunction in mice. The third, KIF17, is a kinesin motor protein that we have shown, in a heterologous system, to be required for ciliary enrichment of the olfactory CNG channel and is endogenously expressed in the cilia of native OSNs. We have found that each of these components is associated with other known ciliary, basal body, and microtubule transport proteins in OSNs however, their precise role in the mammalian olfactory system is unclear. We hypothesize that, in OSNs, CEP290, RPGRORF15, and KIF17 are components of the ciliary transport pathway which orchestrate the trafficking of signaling proteins by assembly of multiprotein complexes in the basal body/cilia compartment. Mutations in these components alter protein interactions leading to the mislocalization of signaling molecules and a loss of olfactory function. Therefore, in Specific Aim 1 we will define the mechanism by which CEP290 regulates trafficking of olfactory G-proteins to cilia.
In Specific Aim 2, we will elucidate the function of RPGRORF15 in olfactory function and protein trafficking to cilia.
In Specific Aim 3, we will determine the role of KIF17 in olfactory signaling protein localization to cilia. Successful completion of our proposed studies will afford new insights into the poorly understood mechanisms of ciliary trafficking in OSNs and the regulation of sensory perception while emphasizing that olfactory dysfunction represents an important clinical manifestation of ciliary disease.

Public Health Relevance

In the nose, neurons involved in smell have many cilia, hair-like projections into the nasal cavity, which contain all of the proteins responsible for detecting odors. The goal of this proposal is to understand how olfactory proteins get to the cilia and why genetic mutations in proteins of these cilia result in the loss of smell.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC009606-05
Application #
8303113
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
2008-07-17
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$334,336
Indirect Cost
$110,648
Name
University of Michigan Ann Arbor
Department
Pharmacology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Green, Warren W; Uytingco, Cedric R; Ukhanov, Kirill et al. (2018) Peripheral Gene Therapeutic Rescue of an Olfactory Ciliopathy Restores Sensory Input, Axonal Pathfinding, and Odor-Guided Behavior. J Neurosci 38:7462-7475
Uytingco, Cedric R; Green, Warren W; Martens, Jeffrey R (2018) Olfactory loss and dysfunction in ciliopathies: Molecular mechanisms and potential therapies. Curr Med Chem :
Williams, Corey L; Uytingco, Cedric R; Green, Warren W et al. (2017) Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther 25:904-916
Chen, Kevin S; McIntyre, Jeremy C; Lieberman, Andrew P et al. (2016) Human spinal autografts of olfactory epithelial stem cells recapitulate donor site histology, maintaining proliferative and differentiation capacity many years after transplantation. Acta Neuropathol 131:639-40
Joiner, Ariell M; Green, Warren W; McIntyre, Jeremy C et al. (2015) Primary Cilia on Horizontal Basal Cells Regulate Regeneration of the Olfactory Epithelium. J Neurosci 35:13761-72
McIntyre, Jeremy C; Joiner, Ariell M; Zhang, Lian et al. (2015) SUMOylation regulates ciliary localization of olfactory signaling proteins. J Cell Sci 128:1934-45
Williams, Corey L; McIntyre, Jeremy C; Norris, Stephen R et al. (2014) Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat Commun 5:5813
McIntyre, Jeremy C; Williams, Corey L; Martens, Jeffrey R (2013) Smelling the roses and seeing the light: gene therapy for ciliopathies. Trends Biotechnol 31:355-63
Rachel, Rivka A; May-Simera, Helen L; Veleri, Shobi et al. (2012) Combining Cep290 and Mkks ciliopathy alleles in mice rescues sensory defects and restores ciliogenesis. J Clin Invest 122:1233-45
McIntyre, Jeremy C; Davis, Erica E; Joiner, Ariell et al. (2012) Gene therapy rescues cilia defects and restores olfactory function in a mammalian ciliopathy model. Nat Med 18:1423-8

Showing the most recent 10 out of 17 publications