Sensory regions of the adult cerebral cortex retain a remarkable plasticity that supports large-scale reorganization following peripheral nerve injury. In the auditory system, degeneration of the afferent pathway that transmits acoustic information from the cochlea to the brain can have only minor effects on pure tone audibility, yet greatly disrupts perceptual discrimination of complex, temporally modulated sounds, such as speech in noise. While this dichotomous perceptual outcome is normally attributed to the number and properties of surviving auditory nerve fibers, we propose that compensatory plasticity at higher levels of the central auditory pathway also plays a critical role in preserving the discriminabilit of rudimentary sounds. To address this hypothesis, we propose to study the loss and partial recovery of auditory system function - from cochlea to the cortex - in adult mice treated with ouabain, a Na+/K+ ATPase inhibitor that lesions afferent fibers in the auditory nerve but leaves the cochlear sound transduction machinery intact. Studies in Aim 1 test the hypothesis that near-complete elimination of Type-I spiral ganglion neuron (SGN) synapses onto inner hair cells will eliminate temporal gap detection behavior, acoustic reflexes, and the auditory brainstem response (ABR), yet behavioral tone detection thresholds will rapidly recover to within normal limits. Studies in Aim 2 will address the hypothesis that the preservation of behavioral hearing thresholds is linked to a compensatory neuronal plasticity that occurs downstream of the brainstem generators of the ABR and acoustic reflexes. By simultaneously tracking ensembles of units in the auditory cortex and inferior colliculus before and after cochlear denervation, studies in Aim 2 seek to show that compensatory plasticity improves the sensitivity and dynamic range of sound properties that are effectively encoded by overall spike rate, but offers little benefit to sound properties encoded by precise action potential timing. By tracking behavioral discrimination of the same sound features used for neurophysiological testing, we will be able to determine whether and how homeostatic plasticity in cortical and midbrain ensembles relates to changes in perceptual acuity. Whereas studies in Aims 1 and 2 focus on reorganization following unilateral cochlear denervation, experiments in Aim 3 will study mice with bilateral ouabain treatment to address the hypothesis that an even more complete recovery of rate-based coding and perceptual discrimination abilities can be achieved when SGN degeneration is matched, rather than imbalanced. Collectively, these studies will address basic science questions related to the hierarchical plasticity of rate versus temporal coding strategies and will identify a fundamental role for compensatory gain control at higher levels in the CNS in the perceptual sequelae of primary auditory neuropathy.

Public Health Relevance

Hidden hearing loss describes a condition where sound detection thresholds are relatively normal but individuals struggle to discriminate complex sounds, such as speech, particularly in noisy background environments. Hidden hearing loss may arise from degeneration of the auditory nerve without accompanying cochlear pathology, as is known to occur as a normal process of aging, after intense noise exposure, or in individuals diagnosed on the auditory neuropathy spectrum. This proposal seeks to understand the contribution of brain plasticity to the preservation of rudimentary sound awareness following profound degeneration of the auditory nerve. This work will shed additional light on the neurobiological underpinnings of hidden hearing loss and suggest new therapeutic approaches.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (02))
Program Officer
Platt, Christopher
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Eye and Ear Infirmary
United States
Zip Code
Balaram, P; Hackett, T A; Polley, D B (2018) Synergistic Transcriptional Changes in AMPA and GABAA Receptor Genes Support Compensatory Plasticity Following Unilateral Hearing Loss. Neuroscience :
Asokan, Meenakshi M; Williamson, Ross S; Hancock, Kenneth E et al. (2018) Sensory overamplification in layer 5 auditory corticofugal projection neurons following cochlear nerve synaptic damage. Nat Commun 9:2468
Gao, Xue; Tao, Yong; Lamas, Veronica et al. (2018) Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217-221
Resnik, Jennifer; Polley, Daniel B (2017) Fast-spiking GABA circuit dynamics in the auditory cortex predict recovery of sensory processing following peripheral nerve damage. Elife 6:
Chambers, Anna R; Pilati, Nadia; Balaram, Pooja et al. (2017) Pharmacological modulation of Kv3.1 mitigates auditory midbrain temporal processing deficits following auditory nerve damage. Sci Rep 7:17496
Chambers, Anna R; Salazar, Juan J; Polley, Daniel B (2016) Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation. Front Neural Circuits 10:72
Kaplan, Alyson B; Kozin, Elliott D; Remenschneider, Aaron et al. (2016) Amblyaudia: Review of Pathophysiology, Clinical Presentation, and Treatment of a New Diagnosis. Otolaryngol Head Neck Surg 154:247-55
Chambers, Anna R; Resnik, Jennifer; Yuan, Yasheng et al. (2016) Central Gain Restores Auditory Processing following Near-Complete Cochlear Denervation. Neuron 89:867-79
Sloas, David C; Zhuo, Ran; Xue, Hongbo et al. (2016) Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex. eNeuro 3:
Mitre, Mariela; Marlin, Bianca J; Schiavo, Jennifer K et al. (2016) A Distributed Network for Social Cognition Enriched for Oxytocin Receptors. J Neurosci 36:2517-35

Showing the most recent 10 out of 29 publications