Brainstem stroke and amyotrophic lateral sclerosis can lead to devastating disability, resulting in part from communication impairment and immobility. In the most severe cases, patients become locked-in - awake and alert, but unable to move, control their environment, or ask for help. In these disorders, as well as other neurologic diseases and injuries, the desire or intention to move remains fully intact, but the motor centers of the brain are """"""""disconnected"""""""" from their targets in the brainstem or spinal cord, resulting in paralysis. The development and testing of a technology that enables someone with severe paralysis or locked-in syndrome to communicate independently and reliably would revolutionize the fields of assistive technology and neuroengineering, and would be critical steps toward re-enabling limb movement after paralyzing disease or injury. Based on encouraging preliminary findings from participants with tetraplegia and limited communication, this proposed translational research will seek to further develop a neural interface system that can record brain signals and permit persons with paralysis to control communication software, simply by imagining the movement of their own paralyzed arm or hand. Up to five participants with brainstem stroke or ALS will receive a 96-microelectrode array (4x4 mm) which will record the individual and summed activities of ensembles of neurons in the motor cortex. In addition to further assessing the safety of this implanted medical device, this research will support the development of reliable neural decoding algorithms that permit persons with paralysis to use their natural movement-related cortical signals to drive a communication device for speech synthesis and improved environmental control.

Public Health Relevance

People with brainstem stroke or ALS are sometimes unable to talk or communicate, despite being fully awake. This research aims to test and develop a neural interface system that could restore the ability to type words, just imagining the movement of one's own hand.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC009899-05
Application #
8708820
Study Section
Special Emphasis Panel (ZDC1-SRB-L (44))
Program Officer
Miller, Roger
Project Start
2009-09-01
Project End
2015-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$1,279,925
Indirect Cost
$329,326
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Young, D; Willett, F; Memberg, W D et al. (2018) Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J Neural Eng 15:026014
Willett, Francis R; Murphy, Brian A; Young, Daniel R et al. (2018) A Comparison of Intention Estimation Methods for Decoder Calibration in Intracortical Brain-Computer Interfaces. IEEE Trans Biomed Eng 65:2066-2078
Brandman, David M; Hosman, Tommy; Saab, Jad et al. (2018) Rapid calibration of an intracortical brain-computer interface for people with tetraplegia. J Neural Eng 15:026007
Pandarinath, Chethan; O'Shea, Daniel J; Collins, Jasmine et al. (2018) Inferring single-trial neural population dynamics using sequential auto-encoders. Nat Methods 15:805-815
Stavisky, Sergey D; Kao, Jonathan C; Nuyujukian, Paul et al. (2018) Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements. Sci Rep 8:16357
Willett, Francis R; Murphy, Brian A; Memberg, William D et al. (2017) Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law. J Neural Eng 14:026010
Ajiboye, A Bolu; Willett, Francis R; Young, Daniel R et al. (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389:1821-1830
Brandman, David M; Cash, Sydney S; Hochberg, Leigh R (2017) Review: Human Intracortical Recording and Neural Decoding for Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 25:1687-1696
Pandarinath, Chethan; Nuyujukian, Paul; Blabe, Christine H et al. (2017) High performance communication by people with paralysis using an intracortical brain-computer interface. Elife 6:
Willett, Francis R; Pandarinath, Chethan; Jarosiewicz, Beata et al. (2017) Feedback control policies employed by people using intracortical brain-computer interfaces. J Neural Eng 14:016001

Showing the most recent 10 out of 37 publications