Despite significant advancement in our understanding of the phonation process in general, it still remains unclear how changes in individual geometrical and material properties of the vocal system affect vocal fold vibration and voice production. Our current understanding of phonation is largely based on results obtained from lumped-mass or other simplified phonatory models. These models have successfully identified key elements and features of phonation. However, parameters that are central to these models often cannot be directly measured or easily related to the anatomical structure or material properties of the vocal folds. Due to this lack of correspondence between model parameters and realistic, directly measurable properties of the vocal folds, direct translation of model-derived findings to clinical applications has been problematic. As a result, speech-language pathologists and surgeons often must rely heavily on experience and their subjective impressions of vibratory pattern to diagnose and treat voice disorders. The long-term goal of the proposed research is to establish a direct link between the underlying geometrical and material properties of the vocal folds and the resulting vocal fold vibration, acoustics, and voice quality. The two main questions to be addressed are: 1) How do changes in the geometrical and material properties of the vocal folds, due to either pathologies or surgical procedures, affect vocal fold vibration and voice quality? and 2) What features of the vocal fold vibration are physically related to the geometrical and material properties of the vocal folds and therefore useful for diagnosis of voice disorders and their ultimate management? Over a five-year period, we propose to answer these two main questions by addressing the following three Specific Aims: 1) Determine the influence of vocal fold geometrical and material properties on the resulting vocal fold vibration, acoustics, and voice quality;2) Quantify the influence of left-right asymmetries in vocal fold geometrical and material properties on the resulting vocal fold vibration, acoustics, and voice quality;3) Determine the influence of localized changes in vocal fold properties on the resulting vocal fold vibration, acoustics, and voice quality.

Public Health Relevance

Successful completion of the proposed research will provide a theoretical framework linking the geometrical and material properties of the vocal folds to vocal fold vibration, acoustics, and voice quality. In the future, this knowledge may be applied in the development of clinical tools that help surgeons and speech-language pathologists in the management of various voice disorders.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01DC011299-04
Application #
8678895
Study Section
Motor Function, Speech and Rehabilitation Study Section (MFSR)
Program Officer
Shekim, Lana O
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Surgery
Type
Schools of Medicine
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Zhang, Zhaoyan; Chhetri, Dinesh K; Bergeron, Jennifer L (2015) Effects of implant stiffness, shape, and medialization depth on the acoustic outcomes of medialization laryngoplasty. J Voice 29:230-5
Yin, Jun; Zhang, Zhaoyan (2014) Interaction between the thyroarytenoid and lateral cricoarytenoid muscles in the control of vocal fold adduction and eigenfrequencies. J Biomech Eng 136:
Xuan, Yue; Zhang, Zhaoyan (2014) Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model. J Speech Lang Hear Res 57:416-25
Mendelsohn, Abie H; Xuan, Yue; Zhang, Zhaoyan (2014) Voice outcomes following laser cordectomy for early glottic cancer: a physical model investigation. Laryngoscope 124:1882-6
Farahani, Mehrdad H; Zhang, Zhaoyan (2014) A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration. J Acoust Soc Am 136:EL369-75
Zhang, Zhaoyan (2014) The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model. J Acoust Soc Am 135:1480-90
Zhang, Zhaoyan; Kreiman, Jody; Gerratt, Bruce R et al. (2013) Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models. J Acoust Soc Am 133:453-62
Yin, Jun; Zhang, Zhaoyan (2013) The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies. J Acoust Soc Am 133:2972-83
Mendelsohn, Abie H; Zhang, Zhaoyan (2011) Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds. J Acoust Soc Am 130:2961-8
Zhang, Zhaoyan (2011) Restraining mechanisms in regulating glottal closure during phonation. J Acoust Soc Am 130:4010-9