In everyday life, humans are regularly exposed to and must make sense of complex acoustical sounds in their environment. While many hearing aid (HA) and cochlear implant (CI) users enjoy fairly accurate speech perception in quiet, they often experience difficulties when listening to more spectrally complex stimuli, such as music, a pervasive and culturally significant art form, and speech in background noise. These limitations are likely related to the signal processing of CIs as well as limitations in the central auditory pathways, particularly in pediatric populations with congenital hearing loss. Through investigation of complex acoustic signals at the auditory periphery, and the coding of those stimuli within the central auditory nervous system, we will deepen our understanding of why music and speech perception in noise is so challenging for hearing impaired listeners. In this study, we will investigate characteristics of the listener's auditory system, the acoustic signal input, as well as potential benefit of music training in relation to perception of spectrally complx sounds (music and speech in background noise). Our first specific aim defines the relationship between cortically generated evoked potentials, the acoustic change response, and perceptual measures of complex stimuli for a wide range of listeners, including normal hearing listeners, hearing aid users and CI recipients.
In Aim 2, through within-subject comparisons, we will measure the effect that different CI signal inputs have on higher level processing of spectrally complex sounds within the auditory nervous system.
Aim 3, which focus on the role of experience-dependent plasticity in perception, investigate the impact of musical training on evoked potentials and perception of music and of speech in background noise. These studies will help us to evaluate the relative benefits of specific training parameters for groups of CI recipients who vary in important factors (e.g., age, hearing profile and history), and will help us predict which individuals may benefit most from systematic training. In summary, these results could (a) expand our understanding of factors that impact perception of spectrally complex signals, (b) investigate benefits of musical training, (c) determine the extent to which training can be generalized to other tasks, like perception of speech in noise, and (d) lead to the development of more effective rehabilitation strategies.

Public Health Relevance

This research will (a) improve our understanding of how complex sounds such as music and speech in noise are processed within the auditory system of hearing aid and cochlear implant users, and (b) evaluate interventions designed to improve their perception of these spectrally complex signals. We will do this by examining how (and whether) participation in music-based auditory training programs enhance perception and enjoyment of music and whether or not they generalize to perception of speech in noise. Results may lead to the development of more effective rehabilitation strategies for HA and CI users.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Auditory System Study Section (AUD)
Program Officer
Donahue, Amy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Iowa
Other Health Professions
Schools of Arts and Sciences
Iowa City
United States
Zip Code