The advanced signal-processing algorithms used in digital hearing aids have improved average hearing aid benefit and satisfaction. However, response to hearing aids is highly variable, with some individuals reporting much more benefit than others. This variability is most evident among older listeners. An important issue is what levels of advanced hearing aid processing are necessary to achieve success with hearing aids in individual listeners. Every form of nonlinear signal processing has its own set of trade-offs of improved audibility versus increased modification of the signal caused by the signal processing. However, there are no effective procedures for determining in clinical fittings who will benefit from the processing or how the processing should be adjusted for the individual listener. The long term goal of this research is use evidence- based clinical tests to guide the selection of signal processing that is most appropriate for individual older adults wearing hearing aids in their own listening environments. The proposed renewal application moves this work toward clinical application in three steps. The first specific aim is to characterize variability in response to signal manipulation among older adults and determine what patient factors are related to that variability under clinical conditions, and to use those data to modify our fitting metrics for more accurate application to clinical fittings. Data will be collected for hearing aids fit by audiologists using current best practice (i.e., standard of care) in our site clinics. Signal manipulation will be quantified and related to measures of aided intelligibility, quality, and preference. This dataset will allow us to extend our model-based approach to include a full continuum of signal processing for patients with a wide range of hearing loss configurations. In the second specific aim, the clinical toolset will be implemented in a computer-based application that can guide audiologists in the fitting and adjustment of signal processing based on individual listener characteristics. Application partners will work with us to develop the necessary software and hardware (a low-noise probe microphone system) capable of measuring hearing aid output and inputting those values to the computer application. The third specific aim is to validate clinical use of the toolset by comparing a population of patients fit with the toolset to those fit using current standard of care. Data will be collected on patient outcomes, clinical impact (number of visits needed to adjust the hearing aids) and audiologist feedback regarding professional confidence. Clinician feedback will also be collected to refine implementation of the clinical application and improve its usability. It is hypothesized that hearing aid fittings completed using the clinical toolset will result in better patient outcomes, fewer post-fitting visits and a higher level of clinician confidence compared to standard-of-care hearing aid fittings. Taken together, the questions addressed in this project will provide a comprehensive assessment of the effects of hearing aid processing in realistic listening environments, while considering specific abilities that affect response to signal processing.

Public Health Relevance

Hearing loss is one of our most pervasive health problems, but the only treatment option for most of those with hearing loss is a hearing aid. The standard approach to selecting signal processing does not consider differences in individual auditory abilities. We will create and validate a clinical computer-based application that guides individualized choice of signal processing based on individual auditory and cognitive abilities.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC012289-07
Application #
9438866
Study Section
Special Emphasis Panel (ZDC1)
Program Officer
King, Kelly Anne
Project Start
2012-04-01
Project End
2022-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
7
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Other Health Professions
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Evanston
State
IL
Country
United States
Zip Code
60201
Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N (2017) Response to Comment on Ohlenforst et al. Ear Hear :
Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J (2017) Auditory and Cognitive Factors Associated with Speech-in-Noise Complaints following Mild Traumatic Brain Injury. J Am Acad Audiol 28:325-339
Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N (2017) Response to Comment: RE: ) Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics, Ear Hear 37, 137-143. Ear Hear 38:644-645
Ward, Kristina M; Shen, Jing; Souza, Pamela E et al. (2017) Age-Related Differences in Listening Effort During Degraded Speech Recognition. Ear Hear 38:74-84
Shen, Jing; Wright, Richard; Souza, Pamela E (2016) On Older Listeners' Ability to Perceive Dynamic Pitch. J Speech Lang Hear Res 59:572-82
Kates, James M; Arehart, Kathryn H (2016) The Hearing-Aid Audio Quality Index (HAAQI). IEEE/ACM Trans Audio Speech Lang Process 24:354-365
Reinhart, Paul N; Souza, Pamela E (2016) Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory. J Speech Lang Hear Res 59:1543-1554
Ohlenforst, Barbara; Souza, Pamela E; MacDonald, Ewen N (2016) Exploring the Relationship Between Working Memory, Compressor Speed, and Background Noise Characteristics. Ear Hear 37:137-43
Shen, Jing; Anderson, Melinda C; Arehart, Kathryn H et al. (2016) Using Cognitive Screening Tests in Audiology. Am J Audiol 25:319-331
Souza, Pamela E; Arehart, Kathryn H; Shen, Jing et al. (2015) Working memory and intelligibility of hearing-aid processed speech. Front Psychol 6:526

Showing the most recent 10 out of 23 publications