The auditory nerve (AN) transmits all auditory information from the cochlea to the brain. In the cochlear nucleus (CN), AN fibers bifurcate to innervate multiple cell populations, including bushy cells (BCs) in the ventral CN, and fusiform cells (FCs) in the dorsal CN. These two cell types differ significantly in their ability to encode temporal properties of sound stimuli. BCs project to binaural circuits in the superior olivary complex and encode spectral and temporal characteristics that allow sounds to be localized in the horizontal plane. FCs project to monaural circuits in the inferior colliculus and detect spectrl cues for localizing sounds in the vertical plane. AN synapses on BCs and FCs are both glutamatergic and involve AMPARs as major postsynaptic glutamate receptors. At AN-BC synapses, synaptic transmission is extremely fast and reliable to preserve information contained in the timing of AN spikes. At AN-FC synapses, synaptic transmission is significantly slower than at AN-BC synapses. Understanding the synaptic mechanisms that make AN-BC synapses faster than AN-FC synapses has been an important question that has been intensely studied. However, which specific AMPAR subunits actually mediate fast synaptic transmission at AN synapses is still unresolved. The goal of the proposed studies is to provide understanding of the functional role of GluA3 AMPAR subunits at AN synapses on brainstem neurons and the sensitivity of AN synapses to auditory experience. Data obtained from this proposal will advance understanding of the cellular mechanisms underlying the temporal precision of sound coding in the normal and in the hearing impaired. Thus in Aim 1 we will test the hypothesis that GluA3 in AN-BC synapses is the AMPAR subunit that determines fast AMPAR kinetics.
Aim 2 will test the hypothesis that increase in expression and localization within the PSD of GluA3 AMPAR subunits mediates the experience-dependent plasticity of AN-BC and AN-FC synapses. To achieve these goals, we will combine hearing tests (auditory brainstem responses, ABRs) to analyze the ability of the brainstem to respond to sound stimuli in vivo, quantitative ultrastructural and molecular techniques, genetic approaches (knockouts) and electrophysiology in acute brainstem slices of adult normal hearing and monaurally earplugged mice. Specifically, we will use freeze-fracture and postembedding immunogold labeling, qRT-PCR together with whole-cell recording to identify morphological, molecular and functional alterations at AN synapses. The results of our studies can be applied to efforts to optimize strategies for treating hearing loss and other hearing disorders. A large body of evidence indicates that the auditory system is highly specialized. Systematic, rigorous studies of the synaptic mechanisms underlying the specializations will both suggest and inform rational therapeutic approaches.

Public Health Relevance

This research aims to provide fundamental information for understanding the functional role of GluA3 AMPAR subunits at auditory nerve synapses on brainstem neurons and the sensitivity of auditory nerve synapses to auditory experience. Data obtained from this proposal will shed more light of the cellular mechanisms underlying the temporal precision of sound coding. Our results will also reveal molecular underpinnings of experience-dependent plasticity of central auditory synapses to auditory experience. Ultimately, the results of our studies can be applied to efforts to optimize strategies for treating hearing los via hearing aids and cochlear prostheses and also may lead to novel treatments paradigms in cases of abnormal plasticity.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC013048-05
Application #
9207101
Study Section
Auditory System Study Section (AUD)
Program Officer
Cyr, Janet
Project Start
2013-03-01
Project End
2018-02-28
Budget Start
2017-03-01
Budget End
2018-02-28
Support Year
5
Fiscal Year
2017
Total Cost
$424,910
Indirect Cost
$142,556
Name
University of Pittsburgh
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Welty, Starr; Teng, Yaqun; Liang, Zhuobin et al. (2018) RAD52 is required for RNA-templated recombination repair in post-mitotic neurons. J Biol Chem 293:1353-1362
García-Hernández, Sofía; Abe, Manabu; Sakimura, Kenji et al. (2017) Impaired auditory processing and altered structure of the endbulb of Held synapse in mice lacking the GluA3 subunit of AMPA receptors. Hear Res 344:284-294
Rubio, María E; Matsui, Ko; Fukazawa, Yugo et al. (2017) The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Struct Funct 222:3375-3393
Clarkson, Cheryl; Antunes, Flora M; Rubio, Maria E (2016) Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus. J Neurosci 36:10214-27
Jeffries, Marisa A; Urbanek, Kelly; Torres, Lester et al. (2016) ERK1/2 Activation in Preexisting Oligodendrocytes of Adult Mice Drives New Myelin Synthesis and Enhanced CNS Function. J Neurosci 36:9186-200
Cai, Xiaoyun; Kardon, Adam P; Snyder, Lindsey M et al. (2016) Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus. Dev Biol 414:149-60
Weisz, Catherine J C; Rubio, Maria E; Givens, Richard S et al. (2016) Excitation by Axon Terminal GABA Spillover in a Sound Localization Circuit. J Neurosci 36:911-25
Mortensen, Lena Sünke; Schmidt, Hartmut; Farsi, Zohreh et al. (2015) KV 10.1 opposes activity-dependent increase in Ca²? influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse. J Physiol 593:181-96
Divito, Christopher B; Steece-Collier, Kathy; Case, Daniel T et al. (2015) Loss of VGLUT3 Produces Circadian-Dependent Hyperdopaminergia and Ameliorates Motor Dysfunction and l-Dopa-Mediated Dyskinesias in a Model of Parkinson's Disease. J Neurosci 35:14983-99
Rubio, M E; Nagy, J I (2015) Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience 303:604-29

Showing the most recent 10 out of 13 publications