Oropharyngeal candidiasis, or thrush, is a frequent disease among immunocompromised patients as well as in elderly people and young children. Overgrowth of Candida albicans in the oral cavity is caused by decreases in saliva or reduction in mucosal antifungal peptides such as human -defensins (hBDs). Histatins are a family of histidine-rich cationic proteins secreted by major salivary glands that contribute significantly to the antifungal activity of saliva. Histatin 5 (Hst 5) has the highest fungicidal activity of the family, and kills yeast by causing selective release of intracellular ions and nucleotides from C. albicans. HBDs share some similarities in fungicidal pathways with Hst 5, but their precise mechanism of toxicity is not known. Cytotoxicity of Hst 5 is initiated by binding to the cell wall followed by cytosolic transport where it disrupts intracellular ion tranport and causes hyperosmotic stress. We have identified cell wall localized C. albicans Ssa2 proteins that are chaperone proteins assisting intracelluar transport, but the molecular identity of the transport mechanism is not known. Our preliminary data show that permeases and endocytosis are involved in peptide translocation. A significant barrier to delivery of Hst 5 or other related cationic peptides is disruption of initial binding of Hst 5 to the yeast cell wall surface by extracellular salts. Objectives of this proposal are design of salt-insensitive peptides which are efficiently transported into the cell as a basis for development of peptide- based therapeutic agents for candidiasis. Therefore, our aims are to identify minimal domains of Hst 5 that function under high salt conditions, enhance their salt resistance with helix-capping motifs, and verify that they retain optimal transport properties. Microarray analyses of Hst 5 treated C. albicans cells show that osmotic stress response by Hog1 MAPKinase pathway is an important mechanism for recovery of cells from Hst 5 toxicity. Candidal cells exposed to physiological levels of antifungal peptides in the oral environment may develop resistance through activation of Hog1p. Our overall hypothesis is that defining stress response pathways and the sensors that initiate signaling will guide strategies to overcome Candidal adaptive resistance. The objectives of the proposed studies are to identify key elements required for fungal cell uptake of peptides and subsequent adaptive responses that modulate Hst 5 and hBD toxicity. This approach will support our long-range goal to develop alternative peptide- based therapies for treatment of oral candidiasis, which is currently limited to a small group of antifungal drugs.

Public Health Relevance

Immunocompromised patients as well as elderly people and young children have a high susceptibility to oropharyngeal candidiasis or oral thrush. Objectives of this proposal are to design salt-insensitive peptides that selectively target yeast cells as oral therapeutic agents for candidiasis.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-MOSS-K (02))
Program Officer
Rodriguez-Chavez, Isaac R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University of New York at Buffalo
Schools of Dentistry
United States
Zip Code
Tati, Swetha; Davidow, Peter; McCall, Andrew et al. (2016) Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis. PLoS Pathog 12:e1005522
Saraswat, Darpan; Kumar, Rohitashw; Pande, Tanaya et al. (2016) Signalling mucin Msb2 Regulates adaptation to thermal stress in Candida albicans. Mol Microbiol 100:425-41
Puri, S; Li, R; Ruszaj, D et al. (2015) Iron binding modulates candidacidal properties of salivary histatin 5. J Dent Res 94:201-8
Kumar, Rohitashw; Saraswat, Darpan; Tati, Swetha et al. (2015) Novel Aggregation Properties of Candida albicans Secreted Aspartyl Proteinase Sap6 Mediate Virulence in Oral Candidiasis. Infect Immun 83:2614-26
Li, Rui; Puri, Sumant; Tati, Swetha et al. (2015) Candida albicans Cek1 mitogen-activated protein kinase signaling enhances fungicidal activity of salivary histatin 5. Antimicrob Agents Chemother 59:3460-8
Baker, O J; Edgerton, M; Kramer, J M et al. (2014) Saliva-microbe interactions and salivary gland dysfunction. Adv Dent Res 26:7-14
Puri, Sumant; Lai, William K M; Rizzo, Jason M et al. (2014) Iron-responsive chromatin remodelling and MAPK signalling enhance adhesion in Candida albicans. Mol Microbiol 93:291-305
Tati, Swetha; Li, Rui; Puri, Sumant et al. (2014) Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis. Antimicrob Agents Chemother 58:756-66
Tati, Swetha; Jang, Woong Sik; Li, Rui et al. (2013) Histatin 5 resistance of Candida glabrata can be reversed by insertion of Candida albicans polyamine transporter-encoding genes DUR3 and DUR31. PLoS One 8:e61480
Li, Rui; Kumar, Rohitashw; Tati, Swetha et al. (2013) Candida albicans flu1-mediated efflux of salivary histatin 5 reduces its cytosolic concentration and fungicidal activity. Antimicrob Agents Chemother 57:1832-9

Showing the most recent 10 out of 37 publications