The long-term objective of this project is to identify new, more effective, and less toxic therapies for Head and Neck Squamous Cell Carcinoma (HNSCC) and related cancers, by understanding the function and regulation of the p53 family members p63 and p73. The p53 family of proteins plays a key role in the pathogenesis of HNSCC. The p53 gene itself is a target of mutational inactivation in more than 50% of these tumors. In contrast, the related family member p63 is not mutated but is dramatically overexpressed andlor subject to genomic amplification in the majority of cases. A contribution of p63 to HNSCC is further supported by the essential role we and others have demonstrated for p63 in promoting proliferation, adhesion signaling, and regenerative potential during normal epithelial development. In HNSCC cells p63 also functions as a repressor of apoptosis mediated by the related family member p73. Pro-apoptotic p73 itself is overexpressed in primary HNSCC, and p63 suppresses apoptosis in these tumors through both physical association with p73 and direct binding to regulatory elements within p73-regulated pro-apoptotic genes. The physiologic significance of these observations is supported by the demonstration that p63/p73 are direct mediators of chemosensitivity to platinum-based chemotherapy in HNSCC and other tumors. Taken together, these findings provide a strong rationale for further studies to understand the biochemical regulation and functional contribution of p63/p73 in HNSCC. This proposal describes a systematic approach to uncovering the regulation of p63/p73 and their role in tumor maintenance in vivo. We hypothesize that a subset of p63/p73 regulators function as endogenous apoptosis suppressors in HNSCC. We have completed a genome wide-screen to identify such regulators, some which may represent attractive therapeutic targets in HNSCC.
In Aim I we will determine which of these factors are most relevant by i) completing a complementary functional screen of initial candidates;ii) performing direct validation of the most attractive candidates;iii) correlating their expression with clinical outcome in primary tumor specimens, and iv) performing biochemical studies to determine their mechanism. Based on its pleiotropic role in normal epithelial development we hypothesize that p63 may contribute to HNSCC tumor maintenance in vivo through multiple pathways.
In Aim II we will test this hypothesis by i) developing and validating an animal model of HNSCC;ii) crossing this model to a p63 conditional allele whose excision can be temporally controlled;iii) determining the effect of endogenous p63 somatic inactivation on tumor progression, and iv) determining the cellular and biochemical effects of endogenous p63 inactivation in this HNSCC model. In addition to improving our knowledge of the basic biology of HNSCC, these studies will advance the goal of uncovering novel and viable therapeutic targets to improve treatment outcomes in this disease.

Public Health Relevance

Head and Neck Squamous Cell Carcinoma (HNSCC) is a common form of human cancer for which little progress has been made in long-term treatment outcomes over the last 30 years. This project aims ultimately to improve treatment success in HNSCC and related tumors, by identifying molecular pathways that function as the tumor cell's Achilles'heel. Once identified, these tumor vulnerabilities can be exploited through the development of new targeted therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
2R01DE015945-06
Application #
7654917
Study Section
Cancer Molecular Pathobiology Study Section (CAMP)
Program Officer
Shirazi, Yasaman
Project Start
2004-04-01
Project End
2011-07-31
Budget Start
2009-08-15
Budget End
2010-07-31
Support Year
6
Fiscal Year
2009
Total Cost
$437,474
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Ellisen, Leif W (2018) Cognitive Computing to Guide Molecular-Based Therapy Selection: Steps Forward amid Abundant Need. Oncologist 23:145-146
Saladi, Srinivas Vinod; Ross, Kenneth; Karaayvaz, Mihriban et al. (2017) ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis. Cancer Cell 31:35-49
Rodriguez Calleja, Lidia; Jacques, Camille; Lamoureux, François et al. (2016) ?Np63? Silences a miRNA Program to Aberrantly Initiate a Wound-Healing Program That Promotes TGF?-Induced Metastasis. Cancer Res 76:3236-51
Isakoff, Steven J; Mayer, Erica L; He, Lei et al. (2015) TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy With Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J Clin Oncol 33:1902-9
McBride, Sean M; Rothenberg, S Michael; Faquin, William C et al. (2014) Mutation frequency in 15 common cancer genes in high-risk head and neck squamous cell carcinoma. Head Neck 36:1181-8
Forster, Nicole; Saladi, Srinivas Vinod; van Bragt, Maaike et al. (2014) Basal cell signaling by p63 controls luminal progenitor function and lactation via NRG1. Dev Cell 28:147-60
Zhao, Rui; Fallon, Timothy R; Saladi, Srinivas Vinod et al. (2014) Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell 30:151-65
He, Lei; Torres-Lockhart, Kristine; Forster, Nicole et al. (2013) Mcl-1 and FBW7 control a dominant survival pathway underlying HDAC and Bcl-2 inhibitor synergy in squamous cell carcinoma. Cancer Discov 3:324-37
Ramsey, Matthew R; Wilson, Catherine; Ory, Benjamin et al. (2013) FGFR2 signaling underlies p63 oncogenic function in squamous cell carcinoma. J Clin Invest 123:3525-38
Gallant-Behm, Corrie L; Ramsey, Matthew R; Bensard, Claire L et al. (2012) ?Np63? represses anti-proliferative genes via H2A.Z deposition. Genes Dev 26:2325-36

Showing the most recent 10 out of 24 publications