Human b-defensins (hBDs), produced by mucosal epithelium, are both antimicrobial and immunoregulatory. We have established a new line of investigation of harnessing commensal bacterial agents that promote production of endogenous hBDs in mucosal tissues. The overarching hypothesis that inspires our work is that targeting commensal bacterial molecules as agents that promote expression of innate response elements in human mucosa is a novel way of addressing the need for new therapeutic strategies to prevent microbial infections. We have isolated and characterized a ~14kDa, cell wall associated lipoprotein from the commensal oral bacterium Fusobacterium nucleatum, and have generated a recombinant version of this agent;both induce hBDs in epithelial cells from numerous mucosal body sites, including the oral mucosa. We refer to this as the Fusobacterial Associated beta Defensin Inducer (FAD-I). To be able, one day, to harness FAD-I or its derivatives in a novel way to bolster mucosal immunity and antimicrobial activity, we require a fundamental understanding of FAD-I's molecular and in vivo safety characteristics and range of activity on human epithelium. This proposal addresses these needs by (1) furthering our understanding of FAD-I in the context of the bacterium itself (Aim I: molecular basis of FAD-I induction phenotypes), (2) discovering the means by which FAD-I promotes cellular activation (Aim II: studies involving receptor mediated activities), and (3) determining the safety of FAD-I in an animal model and identifying the affects FAD-I imparts on the target cells that produce hBDs (Aim III: In vivo modeling and human oral epithelial cell proteome response to FAD-I). With our demonstrated expertise in F. nucleatum molecular bacteriology, hBD related innate immunity, experience in toxicological animal studies and capabilities in conducting proteomics based studies, we are extremely well positioned to discover the potential of FAD-I's novel capabilities.

Public Health Relevance

Conventional antibiotics are losing the battle against infectious microbes and secondary infections from medical procedures. Through our research focusing on the body's own antibiotics;i.e., antimicrobial peptides (AMPs), we have identified an agent from a common bacterium found in the human mouth that promotes the release of these AMPs from cells that make up the linings of our body, resulting in protection from harmful bacterial invasion. We propose to study this agent in order to determine if it can be used to bolster the body's own defenses against bad organisms, resulting in fewer infections and improved healing.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
5R01DE018276-06
Application #
8286091
Study Section
Special Emphasis Panel (ZRG1-MOSS-G (02))
Program Officer
Rodriguez-Chavez, Isaac R
Project Start
2007-05-01
Project End
2016-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
6
Fiscal Year
2012
Total Cost
$451,348
Indirect Cost
$111,028
Name
Case Western Reserve University
Department
Dentistry
Type
Schools of Dentistry
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Miller, D P; Wang, Q; Weinberg, A et al. (2018) Transcriptome analysis of Porphyromonas gingivalis and Acinetobacter baumannii in polymicrobial communities. Mol Oral Microbiol 33:364-377
Guo, Lihong; Shokeen, Bhumika; He, Xuesong et al. (2017) Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Mol Oral Microbiol 32:355-364
Wang, QuanQiu; McCormick, Thomas S; Ward, Nicole L et al. (2017) Combining mechanism-based prediction with patient-based profiling for psoriasis metabolomics biomarker discovery. AMIA Annu Symp Proc 2017:1734-1743
Shi, Baochen; Wu, Tingxi; McLean, Jeffrey et al. (2016) The Denture-Associated Oral Microbiome in Health and Stomatitis. mSphere 1:
Bhattacharyya, Sanghamitra; Ghosh, Santosh K; Shokeen, Bhumika et al. (2016) FAD-I, a Fusobacterium nucleatum Cell Wall-Associated Diacylated Lipoprotein That Mediates Human Beta Defensin 2 Induction through Toll-Like Receptor-1/2 (TLR-1/2) and TLR-2/6. Infect Immun 84:1446-1456
Ghosh, Santosh K; McCormick, Thomas S; Eapen, Betty L et al. (2013) Comparison of epigenetic profiles of human oral epithelial cells from HIV-positive (on HAART) and HIV-negative subjects. Epigenetics 8:703-9
Meisch, Jeffrey P; Nishimura, Michiko; Vogel, Ryan M et al. (2013) Human ?-defensin 3 peptide is increased and redistributed in Crohn's ileitis. Inflamm Bowel Dis 19:942-53
Tebit, Denis M; Ndembi, Nicaise; Weinberg, Aaron et al. (2012) Mucosal transmission of human immunodeficiency virus. Curr HIV Res 10:3-8
Ghosh, Santosh K; Gupta, Sanhita; Jiang, Bin et al. (2011) Fusobacterium nucleatum and human beta-defensins modulate the release of antimicrobial chemokine CCL20/macrophage inflammatory protein 3?. Infect Immun 79:4578-87
McCormick, Thomas S; Weinberg, Aaron (2010) Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000 54:195-206

Showing the most recent 10 out of 12 publications