Periodontal disease initiation and progression occurs as a consequence of the host immune inflammatory response to oral pathogens. The production of inflammatory cytokines is a highly regulated process involving transcriptional and posttranscriptional mechanisms. One of the major signaling pathways activated by periopathogenic LPS in p38 MARK. Following p38 phosphorylation, inactivation of p38 MAP kinases is achieved mainly by a family of dual-specific MAP kinase phosphatases (MKP). MKP-1 is capable of negatively regulating both transcriptional and post transcriptional p38 MAP kinase activity. MKP-1 contributes towards LPS tolerance and over-expression of MKP-1 has shown to accelerate p38 inactivation resulting in diminished proinflammatory cytokine production. We have recently shown that LPS-induced IL-6 mRNA stability expression requires p38 signaling. Preliminary data for this proposal indicates that in MKP- 1 transfected cells, LPS-induced IL-6 expression is significantly attenuated. In addition, we have provided significant data showing the p38 is a major signaling pathway contributing to LPS-induced periodontal bone destruction. Based upon these data, we hypothesize that the endogenous negative regulator mechanism of p38 signaling, MKP-1, is a key component of responsible for attenuation of LPS-induced inflammatory cytokine expression in macrophages. In this proposal, the ability of TIP over-expression to decrease inflammation will be determined in vitro using gene targeted strategies in macrophages, and in vivo using experimental periodontitis models.
The specific aims are 1) To determine the role of over-expressed MKP-1 on IL-6 and TNFa mRNA expression in vitro. 2) To determine the contribution of MKP-1 in ontogeny of inflammatory cytokine production and LPS-induced osteoclastogenesis in primary bone marrow macrophages and 3) To determine the impact of MKP-1 in inflammatory bone destruction in vivo using MKP mice. These studies will establish the role of LPS-induced cytokine expression and negative regulation in inflammatory bone loss through selective attenuation of p38 MAPK-induced signaling in periodontal bone destruction. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
1R01DE018290-01
Application #
7277512
Study Section
Special Emphasis Panel (ZDE1-YL (20))
Program Officer
Lumelsky, Nadya L
Project Start
2007-02-07
Project End
2012-01-31
Budget Start
2007-02-07
Budget End
2008-01-31
Support Year
1
Fiscal Year
2007
Total Cost
$347,208
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Dentistry
Type
Schools of Dentistry
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Valerio, Michael S; Herbert, Bethany A; Basilakos, Dimitrios S et al. (2015) Critical role of MKP-1 in lipopolysaccharide-induced osteoclast formation through CXCL1 and CXCL2. Cytokine 71:71-80
Zhang, Xiaoyi; Hyer, J Madison; Yu, Hong et al. (2014) DUSP1 phosphatase regulates the proinflammatory milieu in head and neck squamous cell carcinoma. Cancer Res 74:7191-7
Valerio, Michael S; Herbert, Bethany A; Griffin 3rd, Alfred C et al. (2014) MKP-1 signaling events are required for early osteoclastogenesis in lineage defined progenitor populations by disrupting RANKL-induced NFATc1 nuclear translocation. Bone 60:16-25
Intini, G; Katsuragi, Y; Kirkwood, K L et al. (2014) Alveolar bone loss: mechanisms, potential therapeutic targets, and interventions. Adv Dent Res 26:38-46
Guimarães, Morgana Rodrigues; Leite, Fábio Renato Manzoli; Spolidorio, Luís Carlos et al. (2013) Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch Oral Biol 58:1309-17
Qin, Zhiqiang; Dai, Lu; Defee, Michael et al. (2013) Kaposi's sarcoma-associated herpesvirus suppression of DUSP1 facilitates cellular pathogenesis following de novo infection. J Virol 87:621-35
Travan, Suncica; Li, Fei; D'Silva, Nisha J et al. (2013) Differential expression of mitogen activating protein kinases in periodontitis. J Clin Periodontol 40:757-64
Zhang, Xiaoyi; Junior, Carlos Rossa; Liu, Min et al. (2013) Oral squamous carcinoma cells secrete RANKL directly supporting osteolytic bone loss. Oral Oncol 49:119-28
Dunmyer, J; Herbert, B; Li, Q et al. (2012) Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss. Mol Oral Microbiol 27:397-407
McAbee, Justin; Li, Qiyan; Yu, Hong et al. (2012) Sexual dimorphism in periapical inflammation and bone loss from mitogen-activated protein kinase phosphatase-1 deficient mice. J Endod 38:1097-100

Showing the most recent 10 out of 31 publications