The goals of this project are to use novel mathematical and genetic approaches to identify loci and disease genes for recessively inherited chondrodysplasias, disorders affecting the craniofacial, axial and appendicular skeleton, thereby revealing new mechanisms of disease. The project will test the following hypotheses: First, that ancestral identity-by-descent can be used to identify loci for recessive disorders in small, consanguineous families. Second, that identifying genes selectively expressed in cartilage is an efficient way to filter genes in a linked interval and quickly identify the disease gene. Third, that massively parallel sequence analysis of all genes in a linked interval can be used to identify skeletal dysplasia disease genes that are not selectively expressed in cartilage. These hypotheses will be tested under two Specific Aims: I. To identify loci for recessively inherited skeletal dysplasia phenotypes using ancestral identity-by-descent mapping. Using small numbers of consanguineous families, a novel mathematical ancestral identity-by-descent method will be applied to whole genome single nucleotide polymorphism data to identify genomic intervals associated with skeletal dysplasias of unknown etiology, thereby localizing the disease genes for these phenotypes. II. To identify novel skeletal dysplasia disease genes using a combination of cartilage selective gene expression and massively parallel sequence analysis. Genes within the linked intervals identified under Aim I will be prioritized for mutation analysis by cartilage- selective gene expression. For the disease genes not identifiable by tissue-selective gene expression, each exon of every gene in the linked interval will be captured using custom arrays, and massively parallel sequence analysis will be used for mutation analysis. The results are expected to reveal previously unknown mechanisms and pathways essential for normal skeletal development.

Public Health Relevance

The proposed work will define the genetic basis for human disorders of skeletal development, disorders that affect the craniofacial, axial and appendicular skeleton. The study will reveal and provide clinical context for genes that are important in this process. Translational application of the findings will include DNA diagnosis opportunities for families and potential new treatments based on the specific genes and pathways identified.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Scholnick, Steven
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Duran, Ivan; Taylor, S Paige; Zhang, Wenjuan et al. (2016) Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 6:34232
Lee, Hane; Nevarez, Lisette; Lachman, Ralph S et al. (2015) A second locus for Schneckenbecken dysplasia identified by a mutation in the gene encoding inositol polyphosphate phosphatase-like 1 (INPPL1). Am J Med Genet A 167A:2470-3
Duran, Ivan; Nevarez, Lisette; Sarukhanov, Anna et al. (2015) HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet 24:1918-28
Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R et al. (2015) TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 6:7074
Murali, Chaya; Lu, James T; Jain, Mahim et al. (2014) Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol Genet Metab Rep 1:213-219
Saitta, Biagio; Passarini, Jenna; Sareen, Dhruv et al. (2014) Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFβ1. Stem Cells Dev 23:1464-78
Li, Bing; Krakow, Deborah; Nickerson, Deborah A et al. (2014) Opsismodysplasia resulting from an insertion mutation in the SH2 domain, which destabilizes INPPL1. Am J Med Genet A 164A:2407-11
Martin, Brett M; Ivanova, Margarita H; Sarukhanov, Anna et al. (2014) Prenatal and postnatal findings in serpentine fibula polycystic kidney syndrome and a review of the NOTCH2 spectrum disorders. Am J Med Genet A 164A:2490-5
Laine, Christine M; Joeng, Kyu Sang; Campeau, Philippe M et al. (2013) WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med 368:1809-16
Below, Jennifer E; Earl, Dawn L; Shively, Kathryn M et al. (2013) Whole-genome analysis reveals that mutations in inositol polyphosphate phosphatase-like 1 cause opsismodysplasia. Am J Hum Genet 92:137-43

Showing the most recent 10 out of 17 publications