The identity of ion channels involved in sensing mechanical force has remained elusive. Mechanically-activated (MA) cation channels function as touch/pain sensors, and are also required for hearing, adjustment of vascular tone and other functions. Indeed, mechanotransduction is the least understood sensory transduction system at the molecular level. We recently identified MA cation channel components in vertebrates named Piezo1 and Piezo2. Expressing Piezos in a variety of mammalian cell lines induce large MA cationic currents. Furthermore, we show that RNAi against Piezo2 in somatosensory neurons specifically downregulates rapidly-adapting MA cation currents. Here, we test the hypothesis that Piezo2 is required for somatosensory mechanotransduction

Public Health Relevance

TSRI Mechanical sensation is inextricably linked to inflammatory pain states caused by diseases such as Arthritis and Temperomandibular Disorders, where even minimal movement of joints (walking, chewing, and speaking) cause pain and lead to symptoms such as chronic headache and ringing in the ears. Therefore, a molecular understanding of thermal and mechanical sensation is important and relevant to the field of pain.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Wan, Jason
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Ranade, Sanjeev S; Syeda, Ruhma; Patapoutian, Ardem (2015) Mechanically Activated Ion Channels. Neuron 87:1162-79
Woo, Seung-Hyun; Lukacs, Viktor; de Nooij, Joriene C et al. (2015) Piezo2 is the principal mechanotransduction channel for proprioception. Nat Neurosci 18:1756-62
Woo, Seung-Hyun; Lumpkin, Ellen A; Patapoutian, Ardem (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25:74-81
Ranade, Sanjeev S; Qiu, Zhaozhu; Woo, Seung-Hyun et al. (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111:10347-52
Maksimovic, Srdjan; Nakatani, Masashi; Baba, Yoshichika et al. (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617-21
Woo, Seung-Hyun; Ranade, Sanjeev; Weyer, Andy D et al. (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622-6
Ranade, Sanjeev S; Woo, Seung-Hyun; Dubin, Adrienne E et al. (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121-5
Coste, Bertrand; Houge, Gunnar; Murray, Michael F et al. (2013) Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. Proc Natl Acad Sci U S A 110:4667-72
Dubin, Adrienne E; Schmidt, Manuela; Mathur, Jayanti et al. (2012) Inflammatory signals enhance piezo2-mediated mechanosensitive currents. Cell Rep 2:511-7