Periodontitis is a chronic inflammatory disease that is driven by polymicrobial infection by red-complex periodontal pathogens, the best characterized of which is P. gingivalis (P.g.). To establish chronic infection in hostile host environments pathogens devise mechanisms by which they evade or subvert host defense mechanisms designed to eliminate them, one such mechanism is lysosome mediated degradation. We propose that P. gingivalis subverts phagolysosome degradation by hijacking the autophagosomal pathway to create a protective intracellular niche in macrophages. Specifically, we will test the hypothesis that upregulation of autophagosome formation is critical for P. gingivalis survival in macrophages and requires MREG mediated lysosomal maturation.
In specific aim 1 we will test the hypothesis that P. g. sequesters into autophagosomes and confers protection from lysosomal degradation.
In specific aim 2 we focus on how the mode of P. g. entry into macrophages contributes to its trafficking profile and persistence.
Specific aim 3 will focus on the LPS-TLR mediated signaling pathways contributing to lysosome maturation as it relates to autophagy.

Public Health Relevance

As sentinels of the immune system, macrophages function to eliminate pathogens through degradative processes as part of the host immune response. Numerous bacterial pathogens subvert these processes to persist, survive and in some cases replicate allowing for their dissemination thereby contributing to systemic disease. In these studies we will investigate the molecular mechanism by which a perio-pathogen, P.gingivalis evades the host defense mechanism by sequestration into none degradative compartments. Formation of these compartments requires a novel regulator of lysosome (degradative) function called melanoregulin. Understanding how melanoregulin contributed to pathogen degradation will allow us to develop therapeutic approaches to enhancing lysosome function during chronic infection.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Oral, Dental and Craniofacial Sciences Study Section (ODCS)
Program Officer
Lunsford, Dwayne
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Shahabuddin, Nishat; Boesze-Battaglia, Kathleen; Lally, Edward T (2016) Trends in Susceptibility to Aggressive Periodontal Disease. Int J Dent Oral Health 2:
Scuron, Monika D; Boesze-Battaglia, Kathleen; Dlakić, Mensur et al. (2016) The Cytolethal Distending Toxin Contributes to Microbial Virulence and Disease Pathogenesis by Acting As a Tri-Perditious Toxin. Front Cell Infect Microbiol 6:168
Boesze-Battaglia, Kathleen; Alexander, Desiree; Dlakić, Mensur et al. (2016) A Journey of Cytolethal Distending Toxins through Cell Membranes. Front Cell Infect Microbiol 6:81
Balashova, N; Dhingra, A; Boesze-Battaglia, K et al. (2016) Aggregatibacter actinomycetemcomitans leukotoxin induces cytosol acidification in LFA-1 expressing immune cells. Mol Oral Microbiol 31:106-14
Shenker, Bruce J; Ojcius, David M; Walker, Lisa P et al. (2015) Aggregatibacter actinomycetemcomitans cytolethal distending toxin activates the NLRP3 inflammasome in human macrophages, leading to the release of proinflammatory cytokines. Infect Immun 83:1487-96
Frost, Laura S; Mitchell, Claire H; Boesze-Battaglia, Kathleen (2014) Autophagy in the eye: implications for ocular cell health. Exp Eye Res 124:56-66
Shenker, Bruce J; Walker, Lisa P; Zekavat, Ali et al. (2014) Blockade of the PI-3K signalling pathway by the Aggregatibacter actinomycetemcomitans cytolethal distending toxin induces macrophages to synthesize and secrete pro-inflammatory cytokines. Cell Microbiol 16:1391-404
Walters, M J; Brown, A C; Edrington, T C et al. (2013) Membrane association and destabilization by Aggregatibacter actinomycetemcomitans leukotoxin requires changes in secondary structures. Mol Oral Microbiol 28:342-53
Baltazar, Gabriel C; Guha, Sonia; Lu, Wennan et al. (2012) Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells. PLoS One 7:e49635
Rachel, Rivka A; Nagashima, Kunio; O'Sullivan, T Norene et al. (2012) Melanoregulin, product of the dsu locus, links the BLOC-pathway and OA1 in organelle biogenesis. PLoS One 7:e42446

Showing the most recent 10 out of 13 publications