Kaposi's sarcoma-associated herpesvirus (KSHV) is a ubiquitous virus that establishes a life-long persistent infection in humans and is associated with Kaposi's sarcoma and several lymphoid malignancies. It has now become clear-following epidemiological, serological, and virological studies-that KSHV legitimately joins the ranks of EBV, CMV, and HHV-6 and-7 as a true oral herpesvirus. During latency, the KSHV genome persists as a multicopy circular DNA assembled into nucleosomal structures. While viral latency is characterized by restricted viral gene expression, reactivation induces the lytic replication program and the expression of viral genes in a defined sequential and temporal order. Our preliminary study demonstrates that (1) the latent and lytic chromatins of KSHV are associated with a distinctive pattern of activating and repressive histone modifications whose distribution changes upon reactivation in an organized manner in correlation with the temporally ordered expression of viral lytic genes. (2) It is intriguing to observe the unique epigenetic profiles of KSHV genome in oral epithelial cells where the KSHV genome primarily undergoes transcriptionally active euchromatin formation, leading to spontaneous lytic replication. (3) We have developed an "infectious" KSHV bacterial artificial chromosome (BAC16) and NOD/SCID IL2Rg-/- (NSG) "humanized" mouse model that allows efficient viral genetic manipulation and in vivo persistence study, respectively. Based on our preliminary studies, we hypothesize that the differential epigenetic modification of the KSHV genome is the crux of determining latent infection vs. lytic reactivation of in vivo viral lifecycle. We will investigate the transition mechanism between euchromatin and heterochromatin during de novo infection of various cells including oral epithelial cells, and utilize small molecule inhibitors, gene knockdown and mutants to alter the epigenetic modifications for KSHV lytic gene expression cascade and latency (Aim 1). Subsequently, we will define in vivo roles of the epigenetic modifications of the KSHV genome for viral persistence by utilizing NSG "humanized" mouse model (Aim 2). Thus, this study will show that histone-modifying enzymes involved in the regulation viral gene expression ultimately serves as pharmaceutical targets to control KSHV-associated oral complications.

Public Health Relevance

It has become clear-following epidemiological, serological, and virological studies-that KSHV legitimately is a true oral herpesvirus. However, we are far from understanding the molecular details of oral complications associated with KSHV due to the lack of functional genetic system and animal model for KSHV. Thus, it is important to develop physiologically relevant experimental systems to understand KSHV epigenome as well as to facilitate the development of new strategies for KSHV-associated oral complication.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Research Project (R01)
Project #
1R01DE023926-01
Application #
8624928
Study Section
Special Emphasis Panel (ZDE1-RK (18))
Program Officer
Rodriguez-Chavez, Isaac R
Project Start
2013-09-17
Project End
2018-06-30
Budget Start
2013-09-17
Budget End
2014-06-30
Support Year
1
Fiscal Year
2013
Total Cost
$410,000
Indirect Cost
$160,000
Name
University of Southern California
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Liang, Qiming; Seo, Gil Ju; Choi, Youn Jung et al. (2014) Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15:228-38
Lee, Hye-Ra; Doganay, Sultan; Chung, Brian et al. (2014) Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 (vIRF4) targets expression of cellular IRF4 and the Myc gene to facilitate lytic replication. J Virol 88:2183-94
Brulois, Kevin; Toth, Zsolt; Wong, Lai-Yee et al. (2014) Kaposi's sarcoma-associated herpesvirus K3 and K5 ubiquitin E3 ligases have stage-specific immune evasion roles during lytic replication. J Virol 88:9335-49
Shi, Mude; Cho, Hyelim; Inn, Kyung-Soo et al. (2014) Negative regulation of NF-?B activity by brain-specific TRIpartite Motif protein 9. Nat Commun 5:4820
Brulois, Kevin; Jung, Jae U (2014) Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 25:597-609
Kronstad, Lisa M; Brulois, Kevin F; Jung, Jae U et al. (2014) Reinitiation after translation of two upstream open reading frames (ORF) governs expression of the ORF35-37 Kaposi's sarcoma-associated herpesvirus polycistronic mRNA. J Virol 88:6512-8
Full, Florian; Jungnickl, Doris; Reuter, Nina et al. (2014) Kaposi's sarcoma associated herpesvirus tegument protein ORF75 is essential for viral lytic replication and plays a critical role in the antagonization of ND10-instituted intrinsic immunity. PLoS Pathog 10:e1003863