The current competing renewal encompasses our wet lab human studies directed at understanding the natural history and pathogenesis of Type 1 diabetes and applying that knowledge to develop improved prediction of the disease. In parallel, with other funding, we study the NOD mouse model, and the two sets of studies are intersecting with the hypothesis that insulin is a primary target of the autoimmunity that leads to beta cell destruction. As demonstrated by these studies, multiple genetic factors contribute to the appearance of islet autoantibodies in prospectively followed children including DR,DQ, and DP alleles, insulin gene, and PTPN22 R620W polymorphisms, while some loci have little influence (CTLA4). In the last funding period we discovered that in children followed from birth alleles DPB1*0402 and DRB1*0403 almost completely prevent islet autoimmunity in children less than 10 years old. In the last study period we also collaborated with Dr. Hutton who discovered the fourth major islet autoantigen (ZnT8) to define the predictive potential of ZnT8 autoantibodies. In children followed from birth we have recently discovered that mean levels of insulin autoantibodies inversely correlate with rate of progression to diabetes with no correlation for GAD65 or IA-2 autoantibodies. In addition, we have initial promising data for a non-radioactive plate capture insulin autoantibody assay that promises with its precision, sensitivity and specificity, to allow us to explore determinants of insulin autoantibodies in children developing diabetes, new onset patients, twins and even normal controls. We believe our MSD insulin autoantibody assay utilizing proinsulin can be improved but even with its current performance will likely replace fluid phase insulin autoantibody radioassays. An important specific aim is to fully characterize the MSD insulin autoantibody assay and to test modifying N-Hydroxy-succinamide labeling and biotinylation of proinsulin to further enhance the assay. Given new assay technology with high precision we are now in a position to explore determinants of multiple levels of insulin autoantibodies, (e.g. higher levels correlating with rate of progression to diabetes and low insulin inhibitable levels found in normal controls which may be potentially genetically determined. We will test the hypothesis that levels of insulin autoantibodies are correlated with abnormalities of T lymphocytes targeting insulin similar to our studies in the NOD mouse and specifically levels of insulin autoantibodies mark the rate of beta cell autoimmunity. These studies should improve our ability to design trials for the prevention of Type 1 diabetes as we better define the natural history of the disease.

Public Health Relevance

We have developed a plate capture non-radioactive assay for insulin autoantibodies that we believe will both revolutionize measurement of insulin autoantibodies and help inform our understanding of the natural history of Type 1 diabetes. In particular we will explore hypothesis that insulin autoantibodies are present at a low level in most individuals, and their levels in multiple autoantibody positive individuals inversely specifically correlate with rate of progression to diabetes.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Spain, Lisa M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Waugh, Kathleen; Snell-Bergeon, Janet; Michels, Aaron et al. (2017) Increased inflammation is associated with islet autoimmunity and type 1 diabetes in the Diabetes Autoimmunity Study in the Young (DAISY). PLoS One 12:e0174840
Michels, Aaron W; Landry, Laurie G; McDaniel, Kristen A et al. (2017) Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes 66:722-734
Frohnert, Brigitte I; Laimighofer, Michael; Krumsiek, Jan et al. (2017) Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young. Pediatr Diabetes :
Frohnert, Brigitte I; Ide, Lisa; Dong, Fran et al. (2017) Late-onset islet autoimmunity in childhood: the Diabetes Autoimmunity Study in the Young (DAISY). Diabetologia 60:998-1006
Liu, Edwin; Dong, Fran; BarĂ³n, Anna E et al. (2017) High Incidence of Celiac Disease in a Long-term Study of Adolescents With Susceptibility Genotypes. Gastroenterology 152:1329-1336.e1
Liu, Chih-Wei; Bramer, Lisa; Webb-Robertson, Bobbie-Jo et al. (2017) Temporal profiles of plasma proteome during childhood development. J Proteomics 152:321-328
Simmons, Kimber M; McFann, Kim; Taki, Iman et al. (2016) Reduced Bone Mineral Density Is Associated with Celiac Disease Autoimmunity in Children with Type 1 Diabetes. J Pediatr 169:44-8.e1
Steck, Andrea K; Dong, Fran; Waugh, Kathleen et al. (2016) Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun 72:113-7
Kodama, Keiichi; Zhao, Zhiyuan; Toda, Kyoko et al. (2016) Expression-Based Genome-Wide Association Study Links Vitamin D-Binding Protein With Autoantigenicity in Type 1 Diabetes. Diabetes 65:1341-9
Zhao, Zhiyuan; Miao, Dongmei; Waugh, Kathleen et al. (2016) Higher Sensitivity and Earlier Identification of Celiac Disease Autoimmunity by a Nonradioactive Assay for Transglutaminase Autoantibodies. J Immunol Res 2016:2904563

Showing the most recent 10 out of 224 publications