Insulin resistance is a major factor in the pathogenesis of type 2 diabetes mellitus and recent studies in humans and rodent models have strongly implicated a causative role for intracellular lipid metabolites in the pathogenesis of insulin resistance in liver and muscle. Furthermore recent in vivo nuclear magnetic resonance spectroscopy (NMR) studies by our group in humans have suggested that inherited defects in mitochondrial function in young lean insulin resistant offspring of parents with type 2 diabetes mellitus as well as acquired defects in lean healthy elderly subjects may be responsible for increased intracellular lipid accumulation and insulin resistance in these individuals. This grant will build on these findings and further explore the role of mitochondrial dysfunction and dysregulated intracellular fatty acid metabolism in causing insulin resistance in unique transgenic and knockout mouse models as well as in awake rats using a novel antisense oligonucleotide approach.
The specific aims that will be addressed in this proposal are: 1) To examine the role of muscle specific PGC1a and PGC1-3 over and under expression on insulin-stimulated rates of muscle glucose metabolism and muscle mitochondrial function, 2) To examine the impact of long chain CoA dehydrogenase deficiency in the pathogenesis of liver and muscle insulin resistance, 3) To examine the role of mitochondrial oxidative stress and mitochondrial DNA damage on mitochondrial function and insulin action, 4) To examine the individual roles of diacylglycerol acyl transferase 1 and diacylglycerol acyl transferase 2 on fat-induced hepatic insulin resistance, 5) To examine the role of protein kinase Ce in the pathogenesis of hepatic insulin resistance. All of these aims will be addressed in vivo using state-of-the-art methods including 31P, 13C and 1H NMR spectroscopy, liquid chromatography-tandem mass spectrometry in combination with radioactive isotopic techniques to obtain an integrated picture of whole-body glucose and energy metabolism as well as organ specific rates of insulin-stimulated glucose metabolism and mitochondrial function. It is anticipated that the results from these studies will provide important new insights into the role of mitochondrial dysfunction and alterations in intracellular fat oxidation in the pathogenesis of insulin resistance as well as identify potential novel targets for the prevention and treatment of type 2 diabetes mellitus.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Laughlin, Maren R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
Internal Medicine/Medicine
Schools of Medicine
New Haven
United States
Zip Code
Sun, Emily W; de Fontgalland, Dayan; Rabbitt, Philippa et al. (2017) Mechanisms Controlling Glucose-Induced GLP-1 Secretion in Human Small Intestine. Diabetes 66:2144-2149
Lee, Hui-Young; Lee, Jae Sung; Alves, Tiago et al. (2017) Mitochondrial-Targeted Catalase Protects Against High-Fat Diet-Induced Muscle Insulin Resistance by Decreasing Intramuscular Lipid Accumulation. Diabetes 66:2072-2081
Ferrandino, Giuseppe; Kaspari, Rachel R; Spadaro, Olga et al. (2017) Pathogenesis of hypothyroidism-induced NAFLD is driven by intra- and extrahepatic mechanisms. Proc Natl Acad Sci U S A 114:E9172-E9180
Petersen, Max C; Shulman, Gerald I (2017) Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci 38:649-665
Ferris, Heather A; Perry, Rachel J; Moreira, Gabriela V et al. (2017) Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proc Natl Acad Sci U S A 114:1189-1194
Feriod, Colleen N; Oliveira, Andre Gustavo; Guerra, Mateus T et al. (2017) Hepatic Inositol 1,4,5 Trisphosphate Receptor Type 1 Mediates Fatty Liver. Hepatol Commun 1:23-35
Abulizi, Abudukadier; Perry, Rachel J; Camporez, João Paulo G et al. (2017) A controlled-release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J 31:2916-2924
Perry, Rachel J; Peng, Liang; Cline, Gary W et al. (2017) A Non-invasive Method to Assess Hepatic Acetyl-CoA In Vivo. Cell Metab 25:749-756
Camporez, João Paulo; Wang, Yongliang; Faarkrog, Kasper et al. (2017) Mechanism by which arylamine N-acetyltransferase 1 ablation causes insulin resistance in mice. Proc Natl Acad Sci U S A 114:E11285-E11292
von Loeffelholz, Christian; Lieske, Stefanie; Neuschäfer-Rube, Frank et al. (2017) The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology 66:616-630

Showing the most recent 10 out of 269 publications