We will first determine whether people with high muscle mitochondrial capacity produce higher amount of reactive oxygen species (ROS) on consuming high fat diet and thus exhibit elevated cellular oxidative damage. We previously found that Asian Indian immigrants have high mitochondrial capacity in spite of severe insulin resistance. Somalians are another new immigrant population with rapidly increasing prevalence of diabetes. Both of these groups traditionally consume low caloric density diets, and we hypothesize that when these groups are exposed to high-calorie Western diets, they exhibit increased oxidative stress, oxidative damage, and insulin resistance. We will compare Asian Indians, Somalians, and NE Americans who are matched for age, BMI, and sex. We will measure ROS production in skeletal muscle following high fat meal. We will compare the oxidative damage to proteins, DNA, and lipids in these three populations following 2 weeks of high fat diet in comparison with low fat diet. We will determine if elevated levels of oxidative damage in these populations is accompanied by high mitochondrial capacity, higher ROS-emitting potential, and lower insulin sensitivity than NE. Secondly the proposal will apply a novel method developed in our laboratory to determine whether abdominally obese people with severe insulin resistance, high insulin levels, and oxidative stress accumulate old and damaged muscle and plasma proteins that may cause deleterious functional consequences. We will determine whether decreasing circulating insulin and oxidative stress by enhancing insulin sensitivity decreases the accumulation of old and damaged protein in muscle and plasma. We hypothesize that three different modes of enhancing insulin sensitivity act by different mechanisms to decrease the accumulation of old and damaged proteins and DNA oxidation. We expect caloric restriction (CR) to reduce oxidative stress by reducing ROS production and thus decrease oxidative damage to proteins and DNA. In contrast aerobic exercise increases ROS production but stimulates a robust antioxidant defense system. Furthermore, unlike CR we expect exercise to increase the synthesis of nascent proteins and turnover of old, damaged proteins. Insulin sensitizers reduce oxidative stress and enhance clearance of old and damaged protein. We will study abdominally obese people and compare them with lean participants to determine whether these insulin resistant people accumulate more damaged proteins and DNA in comparison with lean insulin sensitive people. We will then determine whether 16 weeks of aerobic exercise, caloric restriction and insulin sensitizers versus placebo will attenuate oxidative damage to proteins and DNA and improve insulin sensitivity. The proposed studies will be performed utilizing the state-of-the-art methods many of which were developed in our laboratory during the previous funding period. We expect the results from these studies to provide seminal insights into the underlying mechanism of insulin resistance and type 2 diabetes, in addition to demonstrating mechanisms by which a functional proteome is maintained in vivo.

Public Health Relevance

The proposed experiments investigate the potential novel underlying mechanisms of rapidly expanding prevalence of diabetes and related health problems in the society.
First specific aim i s to determine whether more efficient mitochondria, the powerhouse of cell that produce chemical energy, causes adverse effects on DNA and protein when transitioning from a diet of low calorie content to that of high energy content. The second and third aims are to measure the accumulation of damaged and old proteins in muscle and plasma, using a novel methodology in obese and insulin resistant people and to determine how this potentially deleterious process is altered by aerobic exercise, caloric restriction, and medication that enhance insulin sensitivity and reduce high insulin levels.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK041973-22
Application #
8122172
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Laughlin, Maren R
Project Start
1989-07-01
Project End
2015-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
22
Fiscal Year
2011
Total Cost
$592,740
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
006471700
City
Rochester
State
MN
Country
United States
Zip Code
55905
Robinson, Matthew M; Dasari, Surendra; Konopka, Adam R et al. (2017) Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans. Cell Metab 25:581-592
Johnson, Matthew L; Distelmaier, Klaus; Lanza, Ian R et al. (2016) Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 65:74-84
O'Neill, Brian T; Lee, Kevin Y; Klaus, Katherine et al. (2016) Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest 126:3433-46
Robinson, Matthew M; Dasari, Surendra; Karakelides, Helen et al. (2016) Release of skeletal muscle peptide fragments identifies individual proteins degraded during insulin deprivation in type 1 diabetic humans and mice. Am J Physiol Endocrinol Metab 311:E628-37
Lalia, Antigoni Z; Dasari, Surendra; Johnson, Matthew L et al. (2016) Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans. J Clin Endocrinol Metab 101:626-34
Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas et al. (2016) Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Diabetes 65:561-73
Konopka, Adam R; Esponda, Raul Ruiz; Robinson, Matthew M et al. (2016) Hyperglucagonemia Mitigates the Effect of Metformin on Glucose Production in Prediabetes. Cell Rep 15:1394-1400
Dutta, Tumpa; Kudva, Yogish C; Persson, Xuan-Mai T et al. (2016) Impact of Long-Term Poor and Good Glycemic Control on Metabolomics Alterations in Type 1 Diabetic People. J Clin Endocrinol Metab 101:1023-33
Irving, Brian A; Lanza, Ian R; Henderson, Gregory C et al. (2015) Combined training enhances skeletal muscle mitochondrial oxidative capacity independent of age. J Clin Endocrinol Metab 100:1654-63
González, F; Sreekumaran Nair, K; Basal, E et al. (2015) Induction of hyperandrogenism in lean reproductive-age women stimulates proatherogenic inflammation. Horm Metab Res 47:439-44

Showing the most recent 10 out of 133 publications