Modification of cytosolic, nuclear, and mitochondrial proteins on serine and threonine residues by N-acetylglucosamine (O-GlcNAc) provides a mechanism by which glucose flux rates in the cell can feed back to regulate the function and synthesis of proteins involved in metabolism and growth. The hexosamine biosynthesis pathway (HBP) provides the substrate for this modification, UDP-GlcNAc. At normal to high glucose levels, production of UDP-GlcNAc and subsequent protein modifications are reflective of glucose flux rates, hence the pathway serves a nutrient sensing function. The understanding of this pathway, however, lags seriously behind that of other posttranslational modifications such as phosphorylation for several technical difficulties associated with studying the modification and the enzymes involved in the process. Recently, however, major advances have been made that should allow us to overcome many of these barriers. We propose to take advantage of these advances to address gaps in understanding O-GlcNAc modification by studying the glycogen synthesis pathway. Glycogen synthesis is a critical factor in metabolism and diabetes, but it is incompletely understood despite extensive study. Its regulation, for example, cannot be fully explicated by considering only its classic phosphorylation/dephosphorylation events. Our hypothesis, based on progress in the previous granting period and new preliminary data, is that O-glycosylation of key regulated enzymes in the pathway will affect both their intrinsic activity and their targeting to the glycogen granule. Furthermore, we hypothesize that the degree of glycosylation will be affected by regulation of OGT expression, activity, and targeting. Our overall strategy will be to make the initial surveys in cultured HepG2 cells and then test for relevance in mouse models. We propose to: 1. Define the effects of hexosamine flux on all key enzymes involved in glycogen synthesis. 2. Define the effects of O-GlcNAc at specific sites on glycogen synthase activity and targeting. 3. Determine the degree of specificity of OGT targeting in low vs. high HBP.

Public Health Relevance

We are studying a pathway that is poorly understood but nevertheless has relevance to the mechanisms by which tissues sense and respond to their nutrient status. This sensing mechanism has broad relevance to diabetes, cancer and development. The specific process that we are investigating is how the pathway regulated the storage of glucose as glycogen, an important aspect of regulating blood glucose levels

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Laughlin, Maren R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Utah
Internal Medicine/Medicine
Schools of Medicine
Salt Lake City
United States
Zip Code
Soesanto, Yudi; Luo, Bai; Parker, Glendon et al. (2011) Pleiotropic and age-dependent effects of decreased protein modification by O-linked N-acetylglucosamine on pancreatic ?-cell function and vascularization. J Biol Chem 286:26118-26
Cooksey, Robert C; McClain, Donald A (2011) Increased hexosamine pathway flux and high fat feeding are not additive in inducing insulin resistance: evidence for a shared pathway. Amino Acids 40:841-6
Stapleton, David; Nelson, Chad; Parsawar, Krishna et al. (2010) Analysis of hepatic glycogen-associated proteins. Proteomics 10:2320-9
Shakya, Arvind; Cooksey, Robert; Cox, James E et al. (2009) Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nat Cell Biol 11:320-7
Taylor, Rodrick P; Geisler, Taylor S; Chambers, Jefferson H et al. (2009) Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 284:3425-32
Luo, Bai; Soesanto, Yudi; McClain, Donald A (2008) Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol 28:651-7
Soesanto, Yudi A; Luo, Bai; Jones, Deborah et al. (2008) Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295:E974-80
Taylor, Rodrick P; Parker, Glendon J; Hazel, Mark W et al. (2008) Glucose deprivation stimulates O-GlcNAc modification of proteins through up-regulation of O-linked N-acetylglucosaminyltransferase. J Biol Chem 283:6050-7
Parker, Glendon; Taylor, Rodrick; Jones, Deborah et al. (2004) Hyperglycemia and inhibition of glycogen synthase in streptozotocin-treated mice: role of O-linked N-acetylglucosamine. J Biol Chem 279:20636-42
Parker, Glendon J; Lund, Kelli C; Taylor, Rodrick P et al. (2003) Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine. J Biol Chem 278:10022-7