Fanconi Anemia (FA) is an autosomal recessive disease characterized by progressive bone marrow failure, leukemia susceptibility, and cellular hypersensitivity to Mitomycin C and other DNA crosslinkers. The thirteen known FA proteins cooperate in a common DNA repair pathway, the FA pathway (D'Andrea, A.D. Susceptibility pathways in Fanconi's anemia and breast cancer. N Engl J Med 2010;362:1909-19). A critical downstream event in the FA pathway is the monubiquitination of the FANCD2/FANCI heterodimer. This heterodimer is subsequently deubiquitinated by a multisubunit DUB enzyme complex, USP1/UAF1. During the last five-year grant period, we have shown that the USP1/UAF1 complex plays a critical regulatory function in the FA pathway. The work has had high impact in several research fields. First, understanding the molecular pathology of FA has elucidated several features of genomic instability, leukemia, and bone marrow failure in FA patients and in the general (non-FA) human population. Second, the FA pathway has provided insight into the mechanism of DNA crosslink repair. Third, the FA pathway has provided novel insights to the general field of ubiquitin biology. The FA pathway has uncovered several regulatory mechanisms which control the monoubiquitination state of a critical protein, FANCD2-Ub. This new application describes a novel, and perhaps the most highly regulated, step in the FA pathway - namely, the timed deubiquitination of the FANCD2-Ub substrate by USP1/UAF1 after DNA damage. The finding provides important general insights to the mechanism of DUB/substrate recognition. During the next five year study period our specific aims are: 1) To test the hypothesis that the USP1/UAF1 deubiquitinating complex is targeted to its FANCD2/FANCI substrate through a SLD (Sumo-Like Domain)/SIM interaction. 2) To examine the functional interaction between FANCD2/FANCI and PCNA. 3) To further characterize mouse knockout models of USP1 and UAF1 and to identify other USP1/UAF1 substrates.

Public Health Relevance

Fanconi Anemia (FA) is a rare recessive genetic disease causing bone marrow failure and a predisposition to cancer. Through the systematic study of this disease over the last fifteen years, my laboratory has contributed significantly to the elucidation of a biochemical pathway in human cells regulating DNA repair. The Fanconi Anemia proteins function in this pathway to regulate normal blood cell formation and to prevent the onset of cancer;disruption of this pathway leads to anemia and cancer. Now that we have established this pathway, the protein biomarkers we have described will be useful in 1) diagnosing anemia and cancer in the general population, and 2) developing drugs to treat anemia and cancer in the general population. Thus, the study of this disease will have a broad impact on public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK043889-19
Application #
8106962
Study Section
Molecular and Cellular Hematology (MCH)
Program Officer
Wright, Daniel G
Project Start
1992-03-01
Project End
2015-07-31
Budget Start
2011-09-01
Budget End
2012-07-31
Support Year
19
Fiscal Year
2011
Total Cost
$603,012
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Karras, Georgios I; Yi, Song; Sahni, Nidhi et al. (2017) HSP90 Shapes the Consequences of Human Genetic Variation. Cell 168:856-866.e12
Mouw, Kent W; Goldberg, Michael S; Konstantinopoulos, Panagiotis A et al. (2017) DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 7:675-693
Rondinelli, Beatrice; Gogola, Ewa; YĆ¼cel, Hatice et al. (2017) EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol 19:1371-1378
Bluteau, Dominique; Masliah-Planchon, Julien; Clairmont, Connor et al. (2016) Biallelic inactivation of REV7 is associated with Fanconi anemia. J Clin Invest 126:3580-4
Kais, Zeina; Rondinelli, Beatrice; Holmes, Amie et al. (2016) FANCD2 Maintains Fork Stability in BRCA1/2-Deficient Tumors and Promotes Alternative End-Joining DNA Repair. Cell Rep 15:2488-99
Li, Heng; Lim, Kah Suan; Kim, Hyungjin et al. (2016) Allosteric Activation of Ubiquitin-Specific Proteases by ?-Propeller Proteins UAF1 and WDR20. Mol Cell 63:249-260
Zhang, Haojian; Kozono, David E; O'Connor, Kevin W et al. (2016) TGF-? Inhibition Rescues Hematopoietic Stem Cell Defects and Bone Marrow Failure in Fanconi Anemia. Cell Stem Cell 18:668-81
Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A et al. (2015) RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway. J Clin Invest 125:1523-32
Kim, Hyungjin; Dejsuphong, Donniphat; Adelmant, Guillaume et al. (2014) Transcriptional repressor ZBTB1 promotes chromatin remodeling and translesion DNA synthesis. Mol Cell 54:107-118
Wojtaszek, Jessica L; Wang, Su; Kim, Hyungjin et al. (2014) Ubiquitin recognition by FAAP20 expands the complex interface beyond the canonical UBZ domain. Nucleic Acids Res 42:13997-4005

Showing the most recent 10 out of 99 publications