Investigations from our laboratory have revealed that Notch1 plays a critical role in osteoblastic cell differentiation and function, and its expression n immature osteoblasts causes osteopenia secondary to an inhibitory effect on osteoblastogenesis. Although Notch2 appears to have an important and distinct function from Notch1, most of the work conducted in skeletal cells has examined the effects of Notch1, and there is limited information on the function of Notch2 in the skeleton. Hajdu-Cheney Syndrome (HCS), a devastating disease characterized by acro-osteolysis, osteoporosis and fractures, was recently attributed to gain-of-function mutations of NOTCH2 leading to NOTCH2 protein stabilization.
The aim of the proposed research is to create and study mouse models of HCS, to understand the skeletal disease and mechanisms involved in HCS. As a consequence, the function of Notch2 in the skeleton will be defined.
Our specific aims are: (1) To characterize the HCS and determine the function of Notch2 by studying global and conditional mouse models of Notch2HCS mutant activation in skeletal cells. The skeletal phenotype of global and cell lineage-specific Notch2HCS conditional by inversion (COIN) mutants will be compared to that of wild type mice and determined by contact radiography, densitometry, micro CT scanning and histomorphometry. The biomechanical properties of the skeleton from HCS mutant mice will be analyzed;(2) To determine the mechanism responsible for HCS in the skeleton. To this end, mechanisms responsible for the skeletal phenotype will be established, and we will determine whether the Notch canonical signaling pathway is responsible for the HCS phenotype. In addition, we will explore interactions with Wnt signaling, and determine whether Notch2 mRNA and protein are stabilized in cells from Notch2HCS mutants and explain the phenotype observed. Levels of transcriptional and post-transcriptional regulation of genes modified by Notch2HCS mutants will be examined in vitro;and (3) To determine the role of Notch target gene(s) in the skeleton and in the HCS. To this end, we will determine whether the Notch2HCS mutant phenotype is secondary to the activation of Hairy-Enhancer of Split (Hes) 1. Notch2HCS mutants will be studied in the context (or not) of the conditional Hes1 inactivation for changes in their skeletal phenotype determined by micro CT scanning and histomorphometry and for changes in osteoblastic gene expression.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Malozowski, Saul N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
St. Francis Hospital and Medical Center
United States
Zip Code
Adami, Giovanni; Rossini, Maurizio; Gatti, Davide et al. (2016) Hajdu Cheney Syndrome; report of a novel NOTCH2 mutation and treatment with denosumab. Bone 92:150-156
Canalis, Ernesto; Zanotti, Stefano (2016) Hajdu-Cheney Syndrome, a Disease Associated with NOTCH2 Mutations. Curr Osteoporos Rep 14:126-31
Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok et al. (2016) Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption. J Biol Chem 291:1538-51
Choudhary, Shilpa; Canalis, Ernesto; Estus, Thomas et al. (2015) Cyclooxygenase-2 suppresses the anabolic response to PTH infusion in mice. PLoS One 10:e0120164
Mirza, Faryal; Canalis, Ernesto (2015) Management of endocrine disease: Secondary osteoporosis: pathophysiology and management. Eur J Endocrinol 173:R131-51
DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R et al. (2015) Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss. Endocrinology 156:4129-40
Canalis, Ernesto; Kranz, Lauren; Zanotti, Stefano (2014) Nemo-like kinase regulates postnatal skeletal homeostasis. J Cell Physiol 229:1736-43
Canalis, Ernesto; Zanotti, Stefano (2014) Hajdu-Cheney syndrome: a review. Orphanet J Rare Dis 9:200
Canalis, Ernesto; Zanotti, Stefano; Smerdel-Ramoya, Anna (2014) Connective tissue growth factor is a target of notch signaling in cells of the osteoblastic lineage. Bone 64:273-80
Zanotti, Stefano; Kalajzic, Ivo; Aguila, Hector Leonardo et al. (2014) Sex and genetic factors determine osteoblastic differentiation potential of murine bone marrow stromal cells. PLoS One 9:e86757

Showing the most recent 10 out of 89 publications