Investigations from our laboratory have revealed that Notch1 plays a critical role in osteoblastic cell differentiation and function, and its expression in immature osteoblasts causes osteopenia secondary to an inhibitory effect on osteoblastogenesis. Although Notch2 appears to have an important and distinct function from Notch1, most of the work conducted in skeletal cells has examined the effects of Notch1, and there is limited information on the function of Notch2 in the skeleton. Hajdu-Cheney Syndrome (HCS), a devastating disease characterized by acro-osteolysis, osteoporosis and fractures, was recently attributed to gain of function mutations of NOTCH2 leading to NOTCH2 protein stabilization.
The aim of the proposed research is to create and study mouse models of HCS, to understand the function of Notch2 in the skeleton and to define the mechanisms involved in HCS.
Our specific aims are: 1) To determine the function of Notch2 and characterize the HCS by creating global and conditional mouse models of Notch2HCS mutant activation in skeletal cells. The skeletal phenotype of global and cell lineage-specific Notch2HCS conditional by inversion (COIN) mutants will be compared to that of wild type mice and determined by contact radiography, densitometry, micro CT scanning and histomorphometry. The biomechanical properties of the skeleton from HCS mutant mice will be analyzed;2) To determine the mechanism responsible for HCS in the skeleton. To this end, mechanisms responsible for the skeletal phenotype will be established, and we will determine whether the Notch canonical signaling pathway is responsible for the effects of Notch2 and the HCS. In addition, we will determine whether Notch2 mRNA and protein are stabilized in cells from Notch2HCS mutants and explain the phenotype observed. Levels of transcriptional and post-transcriptional regulation of genes modified by Notch2HCS mutants will be examined in vitro;and 3) To determine the role of Notch2 target gene(s) in the skeleton and in the HCS. To this end, we will determine whether the Notch2HCS mutant phenotype is secondary to the activation of Hairy-Enhancer of Split (Hes) 1 and exclude the involvement of Hes1 related with YRPW (Hey) 1, 2 and L. Notch2HCS mutants will be studied in the context (or not) of the conditional Hes1 inactivation, and if appropriate Hey inactivation, for changes in their skeletal phenotype determined by ?CT scanning and histomorphometry and for changes in osteoblastic gene expression.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Malozowski, Saul N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Connecticut
Schools of Medicine
United States
Zip Code
Canalis, Ernesto (2018) MANAGEMENT OF ENDOCRINE DISEASE: Novel anabolic treatments for osteoporosis. Eur J Endocrinol 178:R33-R44
Canalis, Ernesto (2018) Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders. Metabolism 80:48-56
Yu, Jungeun; Zanotti, Stefano; Walia, Bhavita et al. (2018) The Hajdu Cheney Mutation Is a Determinant of B-Cell Allocation of the Splenic Marginal Zone. Am J Pathol 188:149-159
Canalis, Ernesto; Yu, Jungeun; Schilling, Lauren et al. (2018) The lateral meningocele syndrome mutation causes marked osteopenia in mice. J Biol Chem 293:14165-14177
Zanotti, S; Yu, J; Bridgewater, D et al. (2018) Mice harboring a Hajdu Cheney Syndrome mutation are sensitized to osteoarthritis. Bone 114:198-205
Yu, Jungeun; Zanotti, Stefano; Schilling, Lauren et al. (2018) Induction of the Hajdu-Cheney Syndrome Mutation in CD19 B Cells in Mice Alters B-Cell Allocation but Not Skeletal Homeostasis. Am J Pathol 188:1430-1446
Zanotti, Stefano; Canalis, Ernesto (2017) Parathyroid hormone inhibits Notch signaling in osteoblasts and osteocytes. Bone 103:159-167
Canalis, Ernesto; Zanotti, Stefano (2017) Hairy and Enhancer of Split-Related With YRPW Motif-Like (HeyL) Is Dispensable for Bone Remodeling in Mice. J Cell Biochem 118:1819-1826
Zanotti, Stefano; Yu, Jungeun; Sanjay, Archana et al. (2017) Sustained Notch2 signaling in osteoblasts, but not in osteoclasts, is linked to osteopenia in a mouse model of Hajdu-Cheney syndrome. J Biol Chem 292:12232-12244
Canalis, Ernesto; Sanjay, Archana; Yu, Jungeun et al. (2017) An Antibody to Notch2 Reverses the Osteopenic Phenotype of Hajdu-Cheney Mutant Male Mice. Endocrinology 158:730-742

Showing the most recent 10 out of 99 publications