Bariatric surgery is increasingly used for the treatment of obesity and associated type-2 diabetes, but the mechanisms for the beneficial effects are not well understood. Recent clinical studies show that the large early suppression of food intake may be more important for remission of the diabetic state than previously assumed, as pair-feeding non-surgical control subjects to the low level of food intake of gastric bypass patients improved glycemic control just as much. However, dieting typically fails because of increased hunger and reduced metabolism - counter-regulatory responses that are suspiciously absent after bypass surgery. Here, in a new mouse model for Roux-en-Y gastric bypass surgery (RYGB), we focus on the potential mechanisms responsible for keeping the strong hunger drive in check. Preliminary observations in RYGB mice and rats show that: (a) eating a meal excessively activates calcitonin-gene- related peptide-expressing neurons in the external lateral parabrachial nucleus, (b) reduced food intake is the result of smaller meal size and early satiety, and (c) food choice gradually shifts from high-fat to low-fat foods. We hypothesize that the brainstem "anorexia pathway" centered around the lateral parabrachial nucleus is critically involved in the reduced food intake after RYGB and that the anorexic power of this neural pathway can be leveraged to prevent and reverse obesity without surgery. To this end, we will identify the critical components of the anorexia pathway in Aim 1. We will test the hypothesis that inhibition of the anorexia pathway moderates the reduction in food intake and weight loss after RYGB in Aim 2. Finally, we will test the ability of chronically stimulating the anorexia pathway to prevent or reverse high-fat diet- induced obesity and to prevent weight regain after calorie restriction-induced weight loss in non- surgical animals in Aim 3. Neuron- and site-specific inhibition and stimulation of the anorexia pathway will be achieved by novel pharmacogenetic manipulations. The results of these studies have the potential to identify some critical neural and behavioral mechanisms that make bariatric surgeries so efficient and to translate these mechanistic insights into new pharmacological and behavioral anti-obesity therapies.

Public Health Relevance

Bariatric surgery is currently the most effective treatment of obesity and its associated health problems such as diabetes, cardiovascular disease, and sleep disturbances. This proposal investigates neural mechanisms responsible for the surgery-induced reduction in appetite and body weight, so that new pharmacological and behavioral treatments can be developed without the need for surgery.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Serrano, Jose
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lsu Pennington Biomedical Research Center
Organized Research Units
Baton Rouge
United States
Zip Code
Bruce-Keller, Annadora J; Salbaum, J Michael; Luo, Meng et al. (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77:607-15
Hao, Zheng; Townsend, R Leigh; Mumphrey, Michael B et al. (2014) Vagal innervation of intestine contributes to weight loss After Roux-en-Y gastric bypass surgery in rats. Obes Surg 24:2145-51
Mumphrey, Michael B; Hao, Zheng; Townsend, R Leigh et al. (2014) Reversible hyperphagia and obesity in rats with gastric bypass by central MC3/4R blockade. Obesity (Silver Spring) 22:1847-53
Ye, Jianping; Hao, Zheng; Mumphrey, Michael B et al. (2014) GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol 306:R352-62
Berthoud, Hans-Rudolf (2013) Synergy: a concept in search of a definition. Endocrinology 154:3974-7
Hao, Zheng; Zhao, Zhiyun; Berthoud, Hans-Rudolf et al. (2013) Development and verification of a mouse model for Roux-en-Y gastric bypass surgery with a small gastric pouch. PLoS One 8:e52922
Shin, Andrew C; Zheng, Huiyuan; Townsend, R Leigh et al. (2013) Longitudinal assessment of food intake, fecal energy loss, and energy expenditure after Roux-en-Y gastric bypass surgery in high-fat-fed obese rats. Obes Surg 23:531-40
Shin, Andrew C; Berthoud, Hans-Rudolf (2013) Obesity surgery: happy with less or eternally hungry? Trends Endocrinol Metab 24:101-8
Mumphrey, M B; Patterson, L M; Zheng, H et al. (2013) Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol Motil 25:e70-9
Frutos, Miriam Garcia-San; Pistell, Paul J; Ingram, Donald K et al. (2012) Feed efficiency, food choice, and food reward behaviors in young and old Fischer rats. Neurobiol Aging 33:206.e41-53

Showing the most recent 10 out of 75 publications