The goal of this application is to advance our understanding of the transport pathways that maintain the enterohepatic circulation of bile acids, regulate bile acid flux, and protect against bile acid-induced injury. The foundation for this proposal is our recent identification of the heteromeric Organic Solute Transporter, Osta-Ostb, as a major mechanism for intestinal bile acid transport. In this application, we will focus on the mechanisms that support Osta-Ostb to maintain bile acid homeostasis and on the cytoprotective role of Osta-Ostb in the intestinal and colonic epithelium. Our previous studies demonstrated that intestinal bile acid absorption is impaired but not abolished in Osta-/- mice. Based on those findings, the studies in Specific Aim 1 are designed to test the hypothesis that the ABC transporters Mrp3 and Mrp4 are responsible for the residual bile acid transport and serve to protect the ileal epithelium from bile acid-induced damage in the Osta null mice. Our studies demonstrated that expression of Osta-Ostb is closely regulated by substrate to balance the bile acid flux and intracellular concentration. As such, dysregulation of Osta-Ostb expression may significantly alter bile acid and lipid metabolism, underscoring the importance of the recent finding that OSTa-OSTb expression is decreased in ileum from gallstone patients. Our work showed that the regulation of bile acid synthesis is profoundly altered in Osta-/- mice. Based on these observations, the studies in Specific Aim 2 are designed to elucidate the mechanisms responsible for the altered bile acid homeostasis in the Osta null mice. In the colon, the endogenous bacterial flora convert bile acids to more hydrophobic species capable of passively diffusing into epithelial cells. However, little is known about the mechanisms engaged to export bile acids and protect the colonocyte against bile acid-induced damage. Our preliminary data suggest that Osta-/- mice are more susceptible to dextran sodium sulfate-induced colonic injury as compared to littermate controls. These findings underscore the importance of the recent observation that OSTa expression is dramatically reduced in colon from patients with ulcerative colitis. Based on these findings, the studies in Specific Aim 3 are designed to test the hypothesis that Osta-Ostb is responsible for colonic basolateral bile acid transport and functions to protect the colon from the cytotoxic effects of bile acids. The long-term goal of this work is to understand the mechanisms that control the compartmentalization and enterohepatic circulation of bile acids and their relationship to human gastrointestinal and metabolic disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Sherker, Averell H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
Schools of Medicine
United States
Zip Code
Karpen, Saul J; Dawson, Paul A (2015) Not all (bile acids) who wander are lost: the first report of a patient with an isolated NTCP defect. Hepatology 61:24-7
Dawson, Paul A; Karpen, Saul J (2014) Bile acids reach out to the spinal cord: new insights to the pathogenesis of itch and analgesia in cholestatic liver disease. Hepatology 59:1638-41
Won, Christina S; Lan, Tian; Vandermolen, Karen M et al. (2013) A modified grapefruit juice eliminates two compound classes as major mediators of the grapefruit juice-fexofenadine interaction: an in vitro-in vivo "connect". J Clin Pharmacol 53:982-90
Dawson, Paul A (2013) Novel regulator of enterohepatic bile acid signaling protects against hypercholesterolemia. Cell Metab 17:816-8
Lan, Tian; Haywood, Jamie; Dawson, Paul A (2013) Inhibition of ileal apical but not basolateral bile acid transport reduces atherosclerosis in apoEýýý/ýýý mice. Atherosclerosis 229:374-80
Lan, Tian; Rao, Anuradha; Haywood, Jamie et al. (2012) Mouse organic solute transporter alpha deficiency alters FGF15 expression and bile acid metabolism. J Hepatol 57:359-65
Debray, Dominique; Rainteau, Dominique; Barbu, Veronique et al. (2012) Defects in gallbladder emptying and bile Acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology 142:1581-91.e6
Dawson, Paul A (2011) Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb Exp Pharmacol :169-203
Tang, Weiqing; Jia, Lin; Ma, Yinyan et al. (2011) Ezetimibe restores biliary cholesterol excretion in mice expressing Niemann-Pick C1-Like 1 only in liver. Biochim Biophys Acta 1811:549-55
Dawson, Paul A (2010) Liver disease without flipping: new functions of ATP8B1, the protein affected in familial intrahepatic cholestasis type 1. Hepatology 51:1885-7

Showing the most recent 10 out of 13 publications