The peptide hormone, insulin, regulates metabolism to homeostatically maintain blood glucose levels within a narrow physiological range. In pancreatic ?-cells, insulin is made and stored at high concentration within secretory granules. Physiological stimulation of insulin secretion (multiple times per day) requires active synthesis o new insulin to replenish secretory granule reserves. Insulin synthesis begins with translation of preproinsulin for delivery into the lumen of the endoplasmic reticulum (ER). Therein, proinsulin must fold properly, which is easier than it sounds because proinsulin is a """"""""disulfide-challenged"""""""" protein. In particular, when ?-cells are forced to synthesize higher levels of proinsulin than they are genetically-programmed to handle, they risk proinsulin misfolding with disulfide mispairing, which leads to insulin deficiency, secretory pathway stress and even ?-cell death. Moreover, proinsulin misfolding caused by coding sequence mutations in the INS gene triggers autosomal dominant diabetes, i.e., diabetes that occurs in spite of a perfectly normal second INS allele that ordinarily is sufficient to provide more than enough insulin for the body's needs. The objective of this new grant cycle is to bring new tools to this problem in order to better understand proinsulin folding and export from the ER, and to determine whether it is possible to decrease proinsulin misfolding and enhance proinsulin export in pancreatic ?-cells in vivo. Finally, we push towards a goal of monitoring intrapancreatic insulin content in health, and during onset and progression of diabetes.

Public Health Relevance

Insulin is secreted to the bloodstream from only one cell type in the body: beta cells of pancreatic islets. Making new insulin in beta cells begins with synthesi of proinsulin, and in our last grant cycle we showed that misfolded mutant proinsulin can entrap normal proinsulin in the early secretory pathway of beta cells, preventing adequate insulin production and secretion. In this cycle we examine rate-limiting steps in proinsulin folding and export, and offer a new potential therapy to overcome proinsulin folding failure to improve insulin production and secretion from pancreatic beta cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK048280-21
Application #
8760398
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Haft, Carol R
Project Start
1994-09-01
Project End
2019-06-30
Budget Start
2014-09-12
Budget End
2015-06-30
Support Year
21
Fiscal Year
2014
Total Cost
$507,745
Indirect Cost
$181,221
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Hussain, Syed Saad; Harris, Megan T; Kreutzberger, Alex J B et al. (2018) Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 29:1238-1257
Kim, Geun Hyang; Shi, Guojun; Somlo, Diane Rm et al. (2018) Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity. J Clin Invest 128:1125-1140
Guo, Huan; Sun, Jinhong; Li, Xin et al. (2018) Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 293:1899-1907
Arunagiri, Anoop; Haataja, Leena; Cunningham, Corey N et al. (2018) Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci 1418:5-19
Qi, Ling; Tsai, Billy; Arvan, Peter (2017) New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. Trends Cell Biol 27:430-440
Shi, Guojun; Somlo, Diane RM; Kim, Geun Hyang et al. (2017) ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. J Clin Invest 127:3897-3912
Cunningham, Corey N; He, Kaiyu; Arunagiri, Anoop et al. (2017) Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion. Diabetes 66:741-753
Wasserfall, Clive; Nick, Harry S; Campbell-Thompson, Martha et al. (2017) Persistence of Pancreatic Insulin mRNA Expression and Proinsulin Protein in Type 1 Diabetes Pancreata. Cell Metab 26:568-575.e3
Riahi, Yael; Wikstrom, Jakob D; Bachar-Wikstrom, Etty et al. (2016) Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 59:1480-1491
Barbetti, Fabrizio; Colombo, Carlo; Haataja, Leena et al. (2016) Hyperglucagonemia in an animal model of insulin- deficient diabetes: what therapy can improve it? Clin Diabetes Endocrinol 2:11

Showing the most recent 10 out of 69 publications