Autoimmune diabetes is characterized by an inflammatory reaction in and around pancreatic islets, followed by selective destruction of ?-cells. The broad goals of this research are to elucidate the cellular mechanisms that are responsible for pancreatic ?-cells death and to identify mechanisms by which ?-cells protect themselves against cytokine- and free radical-mediated damage. Nitric oxide, the primary mediator of the inhibitory actions of interleukin-1 (IL-1) and interferon-? (IFN-?) on ?-cell function, also activates a "recovery" pathway that protects ?-cells from cytokine-mediated damage. It is the delicate balance between the toxic and protective actions of nitric oxide that ultimately determine the susceptibility of ?-cells to cytokine- mediated damage. This proposal focuses on elucidating the cellular pathways by which cytokines stimulate ?-cell death, the pathways responsible for ?-cell recovery from cytokine- and free radical-mediated damage, and how these pathways interact to determine ?-cell fate. There are three specific aims. 1. To test the hypothesis that irreversible inhibition of ?-cell function is associated with a switch in the mechanism of cytokine-induced death from necrosis to apoptosis and that the rate of nitric oxide production, the cellular levels of NAD, and the extent of DNA damage contribute to this mechanistic switch. 2. To test the hypothesis that nitric oxide activates AMPK in ?-cells and that AMPK is essential for the "functional recovery" of ?-cells from cytokine- and nitric oxide-mediated damage. 3. To test the hypothesis that FoxO1 is a primary regulator controlling the response of ?-cells to cytokines and nitric oxide. Under conditions in which ?-cells have the ability to recover from cytokine-mediated damage, FoxO1 directs a transcriptional program affording ?-cells protection from oxidative stress. When -cells are committed to cytokine-mediated death, FoxO1 regulates a transcriptional program that directs ?-cell apoptosis. A number of biochemical, molecular biological, immunological, cell biological, and transgenic techniques will be utilized to investigate the cellular pathways through which nitric oxide mediates ?-cell destruction and the pathways that participate in the protection of ?-cells from cytokine-mediated damage. It is hoped that insights into the mechanisms of cytokine-mediated damage and protection from this damage gained from these studies will influence the design of therapeutic strategies aimed at the prevention and treatment of this debilitating disorder.

Public Health Relevance

Autoimmune diabetes is characterized by an inflammatory reaction in and around pancreatic islets, followed by selective destruction of ?-cells. The broad goals of this research are to elucidate the cellular mechanisms that are responsible for pancreatic ?-cells death and to identify mechanisms by which ?-cells protect themselves against cytokine- and free radical- mediated damage.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK052194-17
Application #
8322128
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Appel, Michael C
Project Start
1998-01-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
17
Fiscal Year
2012
Total Cost
$345,902
Indirect Cost
$118,335
Name
Medical College of Wisconsin
Department
Biochemistry
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Khan, Parvez; Idrees, Danish; Moxley, Michael A et al. (2014) Luminol-based chemiluminescent signals: clinical and non-clinical application and future uses. Appl Biochem Biotechnol 173:333-55
Salvatori, Alison S; Elrick, Mollisa M; Samson, Willis K et al. (2014) Neuronostatin inhibits glucose-stimulated insulin secretion via direct action on the pancreatic ?-cell. Am J Physiol Endocrinol Metab 306:E1257-63
Oleson, Bryndon J; Broniowska, Katarzyna A; Schreiber, Katherine H et al. (2014) Nitric oxide induces ataxia telangiectasia mutated (ATM) protein-dependent ?H2AX protein formation in pancreatic ? cells. J Biol Chem 289:11454-64
Freudenburg, Wieke; Gautam, Madhav; Chakraborty, Pradipta et al. (2013) Reduction in ATP levels triggers immunoproteasome activation by the 11S (PA28) regulator during early antiviral response mediated by IFNýý in mouse pancreatic ýý-cells. PLoS One 8:e52408
Broniowska, Katarzyna A; Diers, Anne R; Corbett, John A et al. (2013) Effect of nitric oxide on naphthoquinone toxicity in endothelial cells: role of bioenergetic dysfunction and poly (ADP-ribose) polymerase activation. Biochemistry 52:4364-72
Meares, Gordon P; Fontanilla, Dominique; Broniowska, Katarzyna A et al. (2013) Differential responses of pancreatic ýý-cells to ROS and RNS. Am J Physiol Endocrinol Metab 304:E614-22
Andreone, Teresa; Meares, Gordon P; Hughes, Katherine J et al. (2012) Cytokine-mediated *-cell damage in PARP-1-deficient islets. Am J Physiol Endocrinol Metab 303:E172-9
Baldwin, Aaron C; Green, Christopher D; Olson, L Karl et al. (2012) A role for aberrant protein palmitoylation in FFA-induced ER stress and ?-cell death. Am J Physiol Endocrinol Metab 302:E1390-8
Christmann, Benjamin S; Moran, Jason M; McGraw, Jennifer A et al. (2011) Ccr5 regulates inflammatory gene expression in response to encephalomyocarditis virus infection. Am J Pathol 179:2941-51
Hughes, Katherine J; Meares, Gordon P; Hansen, Polly A et al. (2011) FoxO1 and SIRT1 regulate beta-cell responses to nitric oxide. J Biol Chem 286:8338-48

Showing the most recent 10 out of 53 publications