The role of amino acid status as a signaling event and the pathway by which it signals resulting in ? cell apoptosis has not been evaluated as a causative event. Beyond the consequences of hyperglycemia and hyperlipidemia, additional molecular mechanism (s) that cause ? cell apoptosis during development of diabetes are not well studied but will be vital for the development of novel diagnostic and therapeutic strategies. Apoptosis of ? cells in Type 2 Diabetes (T2DM) is associated with increased stress in the endoplasmic reticulum (ER). Our laboratory has contributed a body of work on the cellular responses to diverse stress conditions, including ER stress and amino acid limitation. Combined work from many labs has shown that the cellular response to ER stress involves the translation and transcriptional reprogramming of cells. We discovered a novel anabolic program that accompanies the translational recovery of late ER stress. This program promotes amino acid uptake, increased tRNA charging, and increased expression of genes involved in protein synthesis. This program which has prosurvival and growth actions under mild stress, paradoxically, promote apoptosis under conditions of chronic stress, by stimulating protein synthesis, by inducing the production of reactive oxygen species, and by exhausting the ATP supply. We propose to study the molecular mechanism of this novel 'suicide'adaptive stress response in insulinoma cells and islets from diabetic mouse models. We will study (i) the mechanisms of transcriptional and translational control, (ii) the mechanism and significance of increased amino acid uptake in the regulation of mRNA translation and (iii) the mechanism via which increased methionine and cystine uptake contribute to protection of ? cells from ER stress-induced apoptosis. Our studies will reveal novel biomarkers in ER stress-induced diabetes (a condition related to T2DM), with diagnostic and therapeutic potential.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK053307-17
Application #
8690828
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Maruvada, Padma
Project Start
1998-01-01
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Yadav, Vinita; Gao, Xing-Huang; Willard, Belinda et al. (2017) Hydrogen sulfide modulates eukaryotic translation initiation factor 2? (eIF2?) phosphorylation status in the integrated stress-response pathway. J Biol Chem 292:13143-13153
Ziosi, Marcello; Di Meo, Ivano; Kleiner, Giulio et al. (2017) Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. EMBO Mol Med 9:96-111
Roy, Debasish; Farabaugh, Kenneth T; Wu, Jing et al. (2017) Coordinated transcriptional control of adipocyte triglyceride lipase (Atgl) by transcription factors Sp1 and peroxisome proliferator-activated receptor ? (PPAR?) during adipocyte differentiation. J Biol Chem 292:14827-14835
Farabaugh, Kenneth T; Majumder, Mithu; Guan, Bo-Jhih et al. (2017) Protein Kinase R Mediates the Inflammatory Response Induced by Hyperosmotic Stress. Mol Cell Biol 37:
Krokowski, Dawid; Guan, Bo-Jhih; Wu, Jing et al. (2017) GADD34 Function in Protein Trafficking Promotes Adaptation to Hyperosmotic Stress in Human Corneal Cells. Cell Rep 21:2895-2910
Guan, Bo-Jhih; van Hoef, Vincent; Jobava, Raul et al. (2017) A Unique ISR Program Determines Cellular Responses to Chronic Stress. Mol Cell 68:885-900.e6
Davuluri, Gangarao; Krokowski, Dawid; Guan, Bo-Jhih et al. (2016) Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol 65:929-937
Hsu, K-S; Guan, B-J; Cheng, X et al. (2016) Translational control of PML contributes to TNF?-induced apoptosis of MCF7 breast cancer cells and decreased angiogenesis in HUVECs. Cell Death Differ 23:469-83
Hao, Yujun; Samuels, Yardena; Li, Qingling et al. (2016) Oncogenic PIK3CA mutations reprogram glutamine metabolism in colorectal cancer. Nat Commun 7:11971
Golovko, Andrei; Kojukhov, Artyom; Guan, Bo-Jhih et al. (2016) The eIF2A knockout mouse. Cell Cycle 15:3115-3120

Showing the most recent 10 out of 60 publications