The overall objective of this proposal is to gain a detailed understanding of the molecular regulation of the synthesis of 1,25-dihydroxyvitamin D (1,25D). Although this steroid hormone plays a crucial role in calcium metabolism, bone growth, and tissue differentiation, little is known about the molecular mechanisms of regulation of its synthesis. The key quantitative regulatory step in the synthesis of 1,25D is its 1alpha-hydroxylation from its endogenous precursor, 25-hydroxyvitaminD (25(OH)D), catalyzed by the enzyme 25(OH)D-1alpha-hydroxylase (1-OHase). The 1-OHase is a mitochondrial cytochrome P450 enzyme similar to the steroidogenic enzymes in the adrenal and gonad. Dr. Portale's laboratory has recently cloned the cDNA and gene for the human 1alpha-hydroxylase enzyme, designated P450c1. They now propose to study the molecular mechanisms of regulation of 1,25D production, and specifically how PTH, phosphorus, and 1,25D regulate the synthesis of 1,25D. Production of 1,25D is disordered in acute and chronic renal failure, X-linked hypophosphatemic rickets, autosomal recessive vitamin D dependent rickets Type 1, renal Fanconi syndrome, and with advanced age. The proposed studies of the physiologic regulation of the 1-OHase at the molecular level will provide the basis for subsequent studies of the potential molecular mechanisms by which regulation of this enzyme is altered by aging and renal disease: 1) They will clone a cDNA for rodent P450c1 and raise antibodies to human P450c1 protein; 2) They will examine hormonal regulation of P450c1 mRNA and protein abundance in mice in vivo and in isolated mouse proximal tubules, in vitro, and determine if induced changes are mediated by transcriptional events. 3) Using immortalized human proximal tubule cells, they will study transcriptional regulation using functional assays of promoter/reporter constructs, and will examine protein/DNA interactions in the relevant regions by bandshift assays, UV-crosslinking, and Southwestern blotting to localize specific cis-elements and their cognate DNA binding proteins; and 4) They will determine the tissue distribution of P450c1 mRNA and protein in kidney and will localize P4501 gene expression in microdissected rat nephron segments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK054433-03
Application #
6178177
Study Section
General Medicine B Study Section (GMB)
Program Officer
Hirschman, Gladys H
Project Start
1998-08-01
Project End
2003-07-31
Budget Start
2000-08-01
Budget End
2001-07-31
Support Year
3
Fiscal Year
2000
Total Cost
$259,253
Indirect Cost
Name
University of California San Francisco
Department
Pediatrics
Type
Schools of Medicine
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Perwad, Farzana; Zhang, Martin Y H; Tenenhouse, Harriet S et al. (2007) Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol 293:F1577-83
Perwad, Farzana; Azam, Nasreen; Zhang, Martin Y H et al. (2005) Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146:5358-64
Azam, Nasreen; Zhang, Martin Y H; Wang, Xuemei et al. (2003) Disordered regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (hyp) mice. Endocrinology 144:3463-8
Wang, Xuemei; Zhang, Martin Y H; Miller, Walter L et al. (2002) Novel gene mutations in patients with 1alpha-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab 87:2424-30
Zhang, Martin Y H; Wang, Xuemei; Wang, Jonathan T et al. (2002) Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1alpha-hydroxylase gene expression in the proximal renal tubule. Endocrinology 143:587-95
Tenenhouse, H S; Martel, J; Gauthier, C et al. (2001) Renal expression of the sodium/phosphate cotransporter gene, Npt2, is not required for regulation of renal 1 alpha-hydroxylase by phosphate. Endocrinology 142:1124-9
Miller, W L; Portale, A A (2001) Genetics of vitamin D biosynthesis and its disorders. Best Pract Res Clin Endocrinol Metab 15:95-109
Portale, A A; Miller, W L (2000) Human 25-hydroxyvitamin D-1alpha-hydroxylase: cloning, mutations, and gene expression. Pediatr Nephrol 14:620-5
Miller, W L; Portale, A A (2000) Vitamin D 1 alpha-hydroxylase. Trends Endocrinol Metab 11:315-9
Miller, W L; Portale, A A (1999) Genetic causes of rickets. Curr Opin Pediatr 11:333-9

Showing the most recent 10 out of 11 publications