In the third grant cycle of "leptin transport across the BBB", we will focus on the role of leptin receptor (ObR)-positive astrocytes in relaying leptin from blood to the CNS after crossing the blood-brain barrier (BBB). We hypothesize that astrocytes not only regulate leptin transport as vital components of the BBB, but also modulate neuronal leptin signaling by enabling a more rapid onset and faster termination of leptin action in neurons. The cellular studies with primary astrocytes from mice will determine the effects of reactive astrogliosis on subtypes of leptin receptor (ObR) expression and leptin turnover. The mouse studies will test the role of astrocytic activity and astrocytic ObR on CNS kinetics of leptin distribution, cellular signaling, and development of obesity.
In Aim 1, we will test the hypothesis that reactive astrocytes facilitate the turnover of leptin in the brain by accelerating intracellular degradation of leptin.
In Aim 2, we will test the hypothesis that reactive astrocytes both in culture and in mice with adult-onset obesity show an imbalance of ObR subtypes resulting from differential regulation.
Aim 3 will focus on regulatory changes in adult mice with diet-induced obesity or the Avy mutation, both of which exhibit regional specific increases of astrocytic ObR. By use of glial metabolic inhibitors and newly generated astrocyte-specific ObR knockout mice, we will show that these ObR(+) astrocytes play an essential role in the regulation of neuronal leptin signaling. The results will provide the first evidence of the functions of ObR(+) astrocytes in linking BBB transport to the CNS response to leptin. An understanding of the consequence of astrogliosis and upregulation of astrocytic ObR in obesity should enable the targeting of astrocytes to counteract the neuroendocrine dysregulation in obese subjects.

Public Health Relevance

Leptin is a hormone mainly produced by fat tissue. Hyperleptinemia is seen in the metabolic syndrome. Obesity and its associated hyperlipidemia, cardiovascular complications, cancer, and sleep apnea have a rapidly increasing prevalence in the US and many other parts of the world. This study will mainly focus on how astrocytes participate in delivering leptin from blood to brain and modulating its actions on neurons, the most commonly considered effector cells. Astrocytes are the most abundant cells in the brain, but very few studies have addressed whether they have anything to do with leptin and obesity. We recently found that both the mRNA and protein of leptin receptors are indeed present in astrocytes. Moreover, the expression level of these leptin receptors increases in mouse models of adult-onset obesity. This suggests an important role of the astrocytic leptin system in the regulatory changes in obese subjects. It is possible that it is neuron-glial interactions, rather than direct activation of neurons, that play important mediatory roles for blood-borne leptin. Thus, the relevance lies in (a) better understanding of how astrocytes affect obesity onset and progression;(b) better understanding of cell-cell interactions in the brain;and (c) potential identification of novel therapeutic targets to better combat obesity.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Hyde, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lsu Pennington Biomedical Research Center
Organized Research Units
Baton Rouge
United States
Zip Code
He, Junyun; Kastin, Abba J; Wang, Yuping et al. (2015) Sleep fragmentation has differential effects on obese and lean mice. J Mol Neurosci 55:644-52
Ouyang, Suidong; Hsuchou, Hung; Kastin, Abba J et al. (2014) Leukocyte infiltration into spinal cord of EAE mice is attenuated by removal of endothelial leptin signaling. Brain Behav Immun 40:61-73
Pan, Weihong; Wu, Xiaojun; He, Yi et al. (2013) Brain interleukin-15 in neuroinflammation and behavior. Neurosci Biobehav Rev 37:184-92
Wu, Xiaojun; Hsuchou, Hung; Kastin, Abba J et al. (2013) Upregulation of astrocytic leptin receptor in mice with experimental autoimmune encephalomyelitis. J Mol Neurosci 49:446-56
Mishra, Pramod K; Hsuchou, Hung; Ouyang, Suidong et al. (2013) Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav Immun 34:98-107
Hsuchou, Hung; Mishra, Pramod K; Kastin, Abba J et al. (2013) Saturable leptin transport across the BBB persists in EAE mice. J Mol Neurosci 51:364-70
Jayaram, Bhavaani; Khan, Reas S; Kastin, Abba J et al. (2013) Protective role of astrocytic leptin signaling against excitotoxicity. J Mol Neurosci 49:523-30
Wang, Yuping; He, Junyun; Kastin, Abba J et al. (2013) Hypersomnolence and reduced activity in pan-leptin receptor knockout mice. J Mol Neurosci 51:1038-45
Pan, Weihong; Yu, Chuanhui; Hsuchou, Hung et al. (2010) The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem 25:623-30
Hsuchou, Hung; Kastin, Abba J; Wu, Xiaojun et al. (2010) Corticotropin-releasing hormone receptor-1 in cerebral microvessels changes during development and influences urocortin transport across the blood-brain barrier. Endocrinology 151:1221-7

Showing the most recent 10 out of 89 publications